满分5 > 高中数学试题 >

如图,曲线C1是以原点O为中心、F1,F2为焦点的椭圆的一部分,曲线C2是以O为...

如图,曲线C1是以原点O为中心、F1,F2为焦点的椭圆的一部分,曲线C2是以O为顶点、F2为焦点的抛物线的一部分,A是曲线C1和C2的交点且∠AF2F1为钝角,若|AF1|=manfen5.com 满分网,|AF2|=manfen5.com 满分网
(1)求曲线C1和C2的方程;
(2)过F2作一条与x轴不垂直的直线,分别与曲线C1、C2依次交于B、C、D、E四点,若G为CD中点、H为BE中点,问manfen5.com 满分网是否为定值?若是求出定值;若不是说明理由.

manfen5.com 满分网
(1)因为在椭圆中2a=|AF1|+|AF2|==6,所以可求曲线C1方程.,因为曲线C2是以O为顶点、F2为焦点的抛物线的一部分,A是曲线C1和C2的交点.|AF1|=,|AF2|=,所以利用抛物线定义,可求,曲线C2方程. (2)先设出B、C、D、E四点坐标,过F2作的与x轴不垂直的直线方程,在分别与椭圆方程,抛物线方程联立,利用根与系数关系,求的值,看结果是否为定值. 【解析】 (1)设椭圆方程为,则2a=|AF1|+|AF2|==6,得a=3 设A(x,y),F1(-c,0),F2(c,0∵|AF1|=,|AF2|=则     ,两式相减得xc=,由抛物线定义可知,|AF2|=x+c= 则c=1,x=或x=1,c=(舍去) 所以椭圆方程为         抛物线方程为y2=4x (2)设B(x1,y1),E(x2,y2),C(x3,y3),D(x4,y4), 设过F2作一条与x轴不垂直的直线方程为y=k(x-1),代入, 得(8+9k2)y2+16ky-64k2=0 ∴y1+y2=-,y1y2= 同理,把y=k(x-1)代入y2=4x,得,ky2-4y-4k=0,y3+y4=,y3y4=-4    所以 =•= ===3
复制答案
考点分析:
相关试题推荐
已知数列{an} 中,a1=2,an-an-1-2n=0(n≥2,n∈N).
(1)写出a2、a3的值(只写结果)并求出数列{an}的通项公式;
(2)设bn=manfen5.com 满分网+manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网,求bn的最大值.
查看答案
已知函数f(x)=ax•lnx+b(a,b∈R),在点(e,f(e))处的切线方程是2x-y-e=0(e为自然对数的底).
(1)求实数a,b的值及f(x)的解析式;
(2)若t是正数,设h(x)=f(x)+f(t-x),求h(x)的最小值;
(3)若关于x的不等式xlnx+(6-x)ln(6-x)≥ln(k2-72k)对一切x∈(0,6)恒成立,求实数k的取值范围.
查看答案
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(Ⅰ)求证:AC⊥BC1
(Ⅱ)求二面角D-CB1-B的平面角的正切值.

manfen5.com 满分网 查看答案
调查某初中1000名学生的肥胖情况,得下表:
偏瘦正常肥胖
女生(人)100173y
男生(人)x177z
已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15.
(Ⅰ)求x的值;
(Ⅱ)若用分层抽样的方法,从这批学生中随机抽取50名,问应在肥胖学生中抽多少名?
(Ⅲ)已知y≥193,z≥193,肥胖学生中男生不少于女生的概率.
查看答案
已知函数f(x)=sin(x+manfen5.com 满分网)+sin(x-manfen5.com 满分网)+cosx+a(a∈R,a为常数).
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若函数f(x)在[-manfen5.com 满分网manfen5.com 满分网]上的最大值与最小值之和为manfen5.com 满分网,求实数a的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.