满分5 > 高中数学试题 >

已知函数f(x)=(2ax-x2)eax,其中a为常数,且a≥0. (Ⅰ)若a=...

已知函数f(x)=(2ax-x2)eax,其中a为常数,且a≥0.
(Ⅰ)若a=1,求函数f(x)的极值点;
(Ⅱ)若函数f(x)在区间manfen5.com 满分网上单调递减,求实数a的取值范围.
(I)由题意把a代入,先使得函数解析式具体,再利用函数在定义域下导函数随自变量x的范围不同其正负符号也不同,得到函数f(x)的单调性的判断,从而零用极值的定义得到函数的极值; (II)由题意等价转化为函数在区间上恒成立问题,最终归结为求函数在定义域下求最值. 解法一:(Ⅰ)依题意得f(x)=(2x-x2)ex,所以f'(x)=(2-x2)ex, 令f′(x)=0,得x=±, 当时,f′(x)<0,函数f(x)在此区间单调递减; 当x∈时,f′(x)>0,函数f(x)在此区间上单调递增; 当x∈时,f′(x)<0,函数f(x)在此区间上单调递减; 由上可知,x=-是函数f(x)的极小值点,x=是函数f(x)的极大值点. (Ⅱ)f'(x)=[-ax2+(2a2-2)x+2a]eax, 由函数f(x)在区间上单调递减可知:f′(x)≤0对任意恒成立, 当a=0时,f′(x)=-2x,显然f'(x)≤0对任意恒成立; 当a>0时,f′(x)≤0等价于ax2-(2a2-2)x-2a≥0, 因为,不等式ax2-(2a2-2)x-2a≥0等价于x- 令g(x)=x- 则g'(x)=1+,在上显然有g′(x)>0恒成立,所以函数g(x)在单调递增, 所以g(x)在上的最小值为 由于f′(x)≤0对任意恒成立等价于x-对任意恒成立, 需且只需g(x)min≥,即0≥,解得-1≤a≤1,因为a>0,所以0<a≤1. 综合上述,若函数f(x)在区间上单调递减,则实数a的取值范围为0≤a≤1. 若>0,即a>1时,由于函数h(x)的图象是连续不间断的, 假如h(x)≥0对任意恒成立,则有, 解得-1≤a≤1,与a>1矛盾,所以h(x)≥0不能对任意恒成立. 综上所述:若函数f(x)在区间上单调递减,则实数a的取值范围为0≤a≤1.
复制答案
考点分析:
相关试题推荐
某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定位3500元;若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,今X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力.
(1)求X的分布列;
(2)求此员工月工资的期望.
查看答案
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;
(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.

manfen5.com 满分网 查看答案
在△ABC中,角A、B、C的对边分别为a、b、c,角A、B、C成等差数列,manfen5.com 满分网,边a的长为manfen5.com 满分网
(I)求边b的长;
(II)求△ABC的面积.
查看答案
给定集合An={1,2,3,…,n},映射f:An→An满足:
①当i,j∈An,i≠j时,f(i)≠f(j);
②任取m∈An,若m≥2,则有m∈{f(1),f(2),..,f(m)}.
则称映射f:An→An是一个“优映射”.例如:用表1表示的映射f:A3→A3是一个“优映射”.
表1                               
i123
f(i)231
表2
i1234
f(i)3
(1)已知表2表示的映射f:A4→A4是一个优映射,请把表2补充完整(只需填出一个满足条件的映射);
(2)若映射f:A10→A10是“优映射”,且方程f(i)=i的解恰有6个,则这样的“优映射”的个数是    查看答案
在△ABC中,角A,B,C所对应的边分别为a,b,c,若a=csinA,则manfen5.com 满分网的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.