满分5 > 高中数学试题 >

如图,在矩形ABCD中,AB=5,BC=3,沿对角线BD把△ABD折起,使A移到...

如图,在矩形ABCD中,AB=5,BC=3,沿对角线BD把△ABD折起,使A移到A1点,过点A1作A1O⊥平面BCD,垂足O恰好落在CD上.
(1)求证:BC⊥A1D;
(2)求直线A1B与平面BCD所成角的正弦值.

manfen5.com 满分网
(1)由已知中A1O⊥平面BCD,垂足O恰好落在CD上我们易得BC⊥A1O,又由四边形ABCD为矩形,故BC⊥CD,则根据线面垂直的判定定理可得BC⊥面A1CD.再由线面垂直的性质即可得到BC⊥A1D; (2)连接BO,则∠A1BO是直线A1B与平面BCD所成的角,根据已知中矩形ABCD中,AB=5,BC=3,及(1)的结论,解三角形A1BO即可得到答案. 【解析】 (1)证明:因为A1O⊥平面BCD,BC⊂平面BCD,∴BC⊥A1O, 因为BC⊥CD,A1O∩CD=O,∴BC⊥面A1CD. 因为A1D⊂面A1CD,∴BC⊥A1D.(6分) (2)连接BO,则∠A1BO是直线A1B与平面BCD所成的角. 因为A1D⊥BC,A1D⊥A1B,A1B∩BC=B,∴A1D⊥面A1BC.A1C⊂面A1BC,∴A1D⊥A1C. 在Rt△DA1C中,A1D=3,CD=5,∴A1C=4. 根据S△A1CD=A1D•A1C=A1O•CD,得到A1O=, 在Rt△A1OB中,sin∠A1BO===. 所以直线A1B与平面BCD所成角的正弦值为.(12分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=asinx+bcos(x-manfen5.com 满分网)的图象经过点(manfen5.com 满分网manfen5.com 满分网),(manfen5.com 满分网,0).
(1)求实数a,b的值;
(2)求函数f(x)在[0,π]上的单调递增区间.
查看答案
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x,则称点(x,f(x))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,求
(1)函数f(x)=x3-3x2+3x对称中心为   
(2)若函数g(x)=manfen5.com 满分网x3-manfen5.com 满分网x2+3x-manfen5.com 满分网+manfen5.com 满分网,则g(manfen5.com 满分网)+g(manfen5.com 满分网)+g(manfen5.com 满分网)+g(manfen5.com 满分网)+…+g(manfen5.com 满分网)=    查看答案
(坐标系与参数方程选做题) 若直线manfen5.com 满分网与曲线manfen5.com 满分网(ϕ为参数,a>0)有两个公共点A,B,且|AB|=2,则实数a的值为    ;在此条件下,以直角坐标系的原点为极点,x轴正方向为极轴建立坐标系,则曲线C的极坐标方程为    查看答案
直线l:x-y=0与椭圆manfen5.com 满分网+y2=1相交A、B两点,点C是椭圆上的动点,则△ABC面积的最大值为    查看答案
若{an}为等差数列,Sn是其前n项和.且manfen5.com 满分网,则tana6=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.