满分5 > 高中数学试题 >

已知数列{an}和{bn}满足:a1=λ,,其中λ为实数,n为正整数. (Ⅰ)对...

已知数列{an}和{bn}满足:a1=λ,manfen5.com 满分网,其中λ为实数,n为正整数.
(Ⅰ)对任意实数λ,证明数列{an}不是等比数列;
(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;
(Ⅲ)设0<a<b,Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.
(1)这种证明数列不是等比数列的问题实际上不好表述,我们可以选择反证法来证明,假设存在推出矛盾. (2)用数列an构造一个新数列,我们写出新数列的第n+1项和第n项之间的关系,发现λ的取值影响数列的性质,所以要对λ进行讨论. (3)根据前面的运算写出数列的前n项和,把不等式写出来观察不等式的特点,构造新函数,根据函数的最值进行验证,注意n的奇偶情况要分类讨论. 【解析】 (Ⅰ)证明:假设存在一个实数λ,使{an}是等比数列,则有a22=a1a3,即,矛盾. 所以{an}不是等比数列. (Ⅱ)【解析】 因为bn+1=(-1)n+1[an+1-3(n+1)+21]=(-1)n+1(an-2n+14) =(-1)n•(an-3n+21)=-bn 又b1=-(λ+18),所以 当λ=-18,bn=0(n∈N+),此时{bn}不是等比数列: 当λ≠-18时,b1=(λ+18)≠0,由上可知bn≠0, ∴(n∈N+). 故当λ≠-18时,数列{bn}是以-(λ+18)为首项,-为公比的等比数列. (Ⅲ)由(Ⅱ)知,当λ=-18,bn=0,Sn=0,不满足题目要求. ∴λ≠-18,故知bn=-(λ+18)•(-)n-1,于是可得 Sn=-, 要使a<Sn<b对任意正整数n成立, 即a<-(λ+18)•[1-(-)n]<b(n∈N+) 得 ① 当n为正奇数时,1<f(n)≤;当n为正偶数时,, ∴f(n)的最大值为f(1)=,f(n)的最小值为f(2)=,. 于是,由①式得a<-(λ+18)<. 当a<b≤3a时,由-b-18≥=-3a-18,不存在实数满足题目要求; 当b>3a存在实数λ,使得对任意正整数n,都有a<Sn<b,且λ的取值范围是(-b-18,-3a-18)
复制答案
考点分析:
相关试题推荐
已知manfen5.com 满分网,P1(x1,y1)、P2(x2,y2)是函数y=f(x)图象上两点,且线段P1P2中点P的横坐标是manfen5.com 满分网
(1)求证点P的纵坐标是定值; 
(2)若数列{an}的通项公式是manfen5.com 满分网(m∈N*),n=1,2…m),求数列{an}的前m项和Sm; 
(3)在(2)的条件下,若m∈N*时,不等式manfen5.com 满分网恒成立,求实数a的取值范围.
查看答案
已知数列{an}中,a1=1,且点P(an,an+1)(n∈N*)在直线x-y+1=0上.
(1)求数列{an}的通项公式;
(2)若函数manfen5.com 满分网,求函数f(n)的最小值;
(3)设manfen5.com 满分网表示数列{bn}的前项和.试问:是否存在关于n的整式g(n),使得S1+S2+S3+…+Sn-1=(Sn-1)•g(n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,试说明理由.
查看答案
数列{an}的首项a1∈(0,1)manfen5.com 满分网
(1)求{an}的通项公式;manfen5.com 满分网
(2)设manfen5.com 满分网,比较bn,bn+1的大小,其中n为正整数.
查看答案
已知数列{an}的前n项和Sn满足log2(Sn+1)=n+1,求数列{an}的通项公式.
查看答案
设a1,a2,…,an是各项不为零的n(n≥4)项等差数列,且公差d≠0.若将此数列删去某一项后,得到的数列(按原来顺序)是等比数列,则所有数对manfen5.com 满分网所组成的集合为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.