满分5 > 高中数学试题 >

已知函数f(x)=x(x-a)(x-b),点A(s,f(s)),B(t,f(t)...

已知函数f(x)=x(x-a)(x-b),点A(s,f(s)),B(t,f(t)).
(1)若a=0,b=3,函数f(x)在(t,t+3)上既能取到极大值,又能取到极小值,求t的取值范围;
(2)当a=0时,manfen5.com 满分网对任意的manfen5.com 满分网恒成立,求b的取值范围;
(3)若0<a<b,函数f(x)在x=s和x=t处取得极值,且manfen5.com 满分网,O是坐标原点,证明:直线OA与直线OB不可能垂直.
(1)只要具体求出函数的极值点,让两个极值点在区间(t,t+3)即可;(2)把参数b分离出来,转化为求函数的最值;(3)把s,t用a,b表示,在假设垂直的条件下即可得到a,b的关系式,根据不等式只要证明,即可根据反证法原理得到所证明的结论.考点:导数及其应用. (1)当a=0,b=3时,f(x)=x3-3x2,f'(x)=3x2-6x,令f'(x)=0得x=0,2,根据导数的符号可以得出函数f(x)在x=0处取得极大值,在x=2处取得极小值.函数f(x)在(t,t+3)上既能取到极大值,又能取到极小值,则只要t<0且t+3>2即可,即只要-1<t<0即可.所以t的取值范围是(-1,0).(4分) (2)当a=0时,对任意的恒成立,即x2-bx+lnx+1≥0对任意的恒成立,也即在对任意的恒成立.令, 则. 记m(x)=x2-lnx,则,则这个函数在其定义域内有唯一的极小值点,故也是最小值点,所以,从而g'(x)>0,所以函数g(x)在单调递增.函数.故只要即可.所以b的取值范围是.(8分) (3)假设,即,即(s,f(s))•(t,f(t))=st+f(s)f(t)=0,故(s-a)(s-b)(t-a)(t-b)=-1,即[st-(s+t)a+a2][st-(s+t)b+b2]=-1. 由于s,t是方程f'(x)=0的两个根,故. 代入上式得ab(a-b)2=9.,即,与矛盾,所以直线OA与直线OB不可能垂直.
复制答案
考点分析:
相关试题推荐
已知点列B1(1,b1),B2(2,b2),…,Bn(n,bn),…(n∈N)顺次为抛物线y=manfen5.com 满分网x2上的点,过点Bn(n,bn)作抛物线y=manfen5.com 满分网x2的切线交x轴于点An(an,0),点Cn(cn,0)在x轴上,且点An,Bn,Cn构成以点Bn为顶点的等腰三角形.
(1)求数列{an},{cn}的通项公式;
(2)是否存在n使等腰三角形AnBnCn为直角三角形,若有,请求出n;若没有,请说明理由.
(3)设数列{manfen5.com 满分网}的前n项和为Sn,求证:manfen5.com 满分网≤Snmanfen5.com 满分网
查看答案
某造船公司年造船量最多20艘,已知造船x艘的产值函数为R(x)=3700x+45x2-10x3(单位:万元),成本函数为C(x)=460x+500(单位:万元).
(1)求利润函数p(x);(提示:利润=产值-成本)
(2)问年造船量安排多少艘时,可使公司造船的年利润最大?
(3)在经济学中,定义函数f(x)的边际函数Mf(x)=f(x+1)-f(x).求边际利润函数Mp(x),并求Mp(x)单调递减时x的取值范围;试说明Mp(x)单调递减在本题中的实际意义是什么?(参考公式:(a+b)3=a3+3a2b+3ab2+b3
查看答案
如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,E、F分别为PC、BD的中点,侧面PAD⊥底面ABCD,且PA=PD=manfen5.com 满分网AD.
(1)求证:EF∥平面PAD;
(2)求证:PA⊥平面PCD.

manfen5.com 满分网 查看答案
为了更好的开展社团活动,丰富同学们的课余生活,现用分层抽样的方法从“模拟联合国”,“街舞”,“动漫”,“话剧”四个社团中抽取若干人组成校社团指导小组,有关数据见下表(单位:人)
社团相关人数抽取人数
模拟联合国24a
街舞183
动漫b4
话剧12c
(1)求a,b,c的值;
(2)若从“动漫”与“话剧”社团已抽取的人中选2人担任指导小组组长,求这2人分别来自这两个社团的概率.
查看答案
已知sin(π-α)=manfen5.com 满分网,α∈(0,manfen5.com 满分网).
(1)求sin2α-cos2manfen5.com 满分网的值;
(2)求函数f(x)=manfen5.com 满分网cosαsin2x-manfen5.com 满分网cos2x的单调递增区间.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.