记函数f(x)在区间D上的最大值与最小值分别为max{f(x)|x∈D}与min{f(x)|x∈D}.设函数f(x)=
,1<b<3.g(x)=f(x)+ax,x∈[1,3].
(1)若函数g(x)在[1,3]上单调递减,求a的取值范围;
(2)若a∈R.令,h(a)=max{g(x)|x∈[1,3]}-{g(x)|x∈[1,3]}.记d(b)=min{h(a)|a∈R}.试写出h(a)的表达式,并求min{d(b)|b∈(1,3)};
(3)令k(a)=max{g[f(x)]|x∈l}-min{g[f(x)]|x∈l}(其中l为g[f(x)]的定义域).若l恰好为[1,3],求b的取值范围,并求min{k(a)|a∈R}.
查看答案