结合图形,逐一分析答案,运用排除、举反例直接计算等手段,找出正确答案.
【解析】
①如图ABCD为正四面体,
∴△ABC为等边三角形,
又∵OA、OB、OC两两垂直,
∴OA⊥面OBC,∴OA⊥BC,
过O作底面ABC的垂线,垂足为N,
连接AN交BC于M,
由三垂线定理可知BC⊥AM,
∴M为BC中点,
同理可证,连接CN交AB于P,则P为AB中点,
∴N为底面△ABC中心,
∴O-ABC是正三棱锥,故A正确.
②将正四面体ABCD放入正方体中,如图所示,显然OB与平面ACD不平行.
则答案B不正确,
故本题答案选B.