满分5 > 高中数学试题 >

已知m>1,直线l:x-my-=0,椭圆C:+y2=1,F1、F2分别为椭圆C的...

已知m>1,直线l:x-my-manfen5.com 满分网=0,椭圆C:manfen5.com 满分网+y2=1,F1、F2分别为椭圆C的左、右焦点.
(Ⅰ)当直线l过右焦点F2时,求直线l的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.
(1)把F2代入直线方程求得m,则直线的方程可得. (2)设A(x1,y1),B(x2,y2).直线与椭圆方程联立消去x,根据判别式大于0求得m的范围,且根据韦达定理表示出y1+y2和y1y2,根据,=2,可知G(,),h(,),表示出|GH|2,设M是GH的中点,则可表示出M的坐标,进而根据2|MO|<|GH|整理可得x1x2+y1y2<0把x1x2和y1y2的表达式代入求得m的范围,最后综合可得答案. 【解析】 (Ⅰ)【解析】 因为直线l:x-my-=0,经过F2(,0), 所以=,得m2=2, 又因为m>1,所以m=, 故直线l的方程为x-y-1=0. (Ⅱ)【解析】 设A(x1,y1),B(x2,y2). 由,消去x得 2y2+my+-1=0 则由△=m2-8(-1)=-m2+8>0,知m2<8, 且有y1+y2=-,y1y2=-. 由于F1(-c,0),F2(c,0),故O为F1F2的中点, 由,=2,可知G(,),H(,) |GH|2=+ 设M是GH的中点,则M(,), 由题意可知2|MO|<|GH| 即4[()2+()2]<+即x1x2+y1y2<0 而x1x2+y1y2=(my1+)(my2+)+y1y2=(m2+1)() 所以()<0,即m2<4 又因为m>1且△>0 所以1<m<2. 所以m的取值范围是(1,2).
复制答案
考点分析:
相关试题推荐
某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.
(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(Ⅱ)从频率分布直方图中,估计本次考试的平均分;
(Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,在[70,100]记1分,用X表示抽取结束后的总记分,求X的分布列和数学期望.

manfen5.com 满分网 查看答案
如图,在底面是正方形的四棱锥P-ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
(I)求证:PD⊥BC;
(II)求二面角B-PD-C的正切值.

manfen5.com 满分网 查看答案
在△ABC中,角A、B、C的对边分别为a、b、c,向量 manfen5.com 满分网=(sinA,b+c),manfen5.com 满分网=(a-c,sinC-sinB),满足|manfen5.com 满分网+manfen5.com 满分网|=|manfen5.com 满分网-manfen5.com 满分网|.
(Ⅰ)求角B的大小;
(Ⅱ)设manfen5.com 满分网=(sin(C+manfen5.com 满分网),manfen5.com 满分网),manfen5.com 满分网=(2k,cos2A) (k>1),manfen5.com 满分网manfen5.com 满分网有最大值为3,求k的值.
查看答案
如图所示,直线x=2与双曲线C:manfen5.com 满分网的渐近线交于E1,E2两点,记manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网,任取双曲线C上的点P,若manfen5.com 满分网=amanfen5.com 满分网+bmanfen5.com 满分网,则实数a和b满足的一个等式是   
manfen5.com 满分网 查看答案
若x,y满足约束条件manfen5.com 满分网目标函数z=ax+2y仅在点(1,0)处取得最小值,则a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.