满分5 > 高中数学试题 >

已知{an}是公差为d的等差数列,{bn}是公比为q的等比数列 (1)若an=3...

已知{an}是公差为d的等差数列,{bn}是公比为q的等比数列
(1)若an=3n+1,是否存在m,n∈N*,有am+am+1=ak?请说明理由;
(2)若bn=aqn(a、q为常数,且aq≠0)对任意m存在k,有bm•bm+1=bk,试求a、q满足的充要条件;
(3)若an=2n+1,bn=3n试确定所有的p,使数列{bn}中存在某个连续p项的和式数列中{an}的一项,请证明.
(1)把an的通项公式代入am+am+1=ak,整理可得k和m的关系式,结果为分数,根据m、k∈N,可知k-2m也应该为整数,进而可判定不存在n、k∈N*,使等式成立. (2)利用特殊值法,令m=1,则可知b1•b2=bk,把等比数列的通项公式代入整理可得a=qc,其中c是大于等于-2的整数;反之a=qc时,其中c是大于等于-2的整数,则bn=qn+c,代入bm•bm+1中整理得bm•bm+1=bk,进而可判断a、q满足的充要条件是a=qc,其中c是大于等于-2的整数 (3)设bm+1+bm+2+…+bm+p=ak,先看当p为偶数时等式左边为偶数,右边为奇数,等式不可能成立;再看当p=1时,等式成立,当p≥3且为奇数时,根据bm+1+bm+2+…+bm+p=ak,整理可得3m+1(3p-1)=4k+2,进而可知3m+1[2(Cp2+Cp2•22++Cpp•2p-2)+p]=2k+1,此时,一定有m和k使上式一定成立.综合可知当p为奇数时,命题都成立. 【解析】 (1)由am+am+1=ak,得6m+6+3k+1, 整理后,可得,∵m、k∈N, ∴k-2m为整数∴不存在n、k∈N*,使等式成立. (2)当m=1时,则b1•b2=bk, ∴a2•q3=aqk∴a=qk-3,即a=qc,其中c是大于等于-2的整数 反之当a=qc时,其中c是大于等于-2的整数,则bn=qn+c, 显然bm•bm+1=qm+c•qm+1+c=q2m+1+2c=bk,其中k=2m+1+c ∴a、q满足的充要条件是a=qc,其中c是大于等于-2的整数 (3)设bm+1+bm+2+…+bm+p=ak 当p为偶数时,(*)式左边为偶数,右边为奇数, 当p为偶数时,(*)式不成立. 由(*)式得, 整理得3m+1(3p-1)=4k+2 当p=1时,符合题意. 当p≥3,p为奇数时,3p-1=(1+2)p-1 =Cp+Cp1•21+Cp2•22++Cpp•2p-1 =Cp1•21+Cp2•22++Cpp•2p =2(Cp1+Cp2•2++Cpp•2p-1) =2[2(Cp2+Cp2•22++Cpp•2p-2)+p] ∴由3m+1(3p-1)=4k+2,得3m+1[2(Cp2+Cp2•22++Cpp•2p-2)+p]=2k+1 ∴当p为奇数时,此时,一定有m和k使上式一定成立. ∴当p为奇数时,命题都成立.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网的图象过坐标原点O,且在点(-1,f(-1))处的切线的斜率是-5.
(Ⅰ)求实数b,c的值;  
(Ⅱ)求f(x)在区间[-1,2]上的最大值;
(Ⅲ)对任意给定的正实数a,曲线y=f(x)上是否存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?说明理由.
查看答案
已知m>1,直线l:x-my-manfen5.com 满分网=0,椭圆C:manfen5.com 满分网+y2=1,F1、F2分别为椭圆C的左、右焦点.
(Ⅰ)当直线l过右焦点F2时,求直线l的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.
查看答案
某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.
(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(Ⅱ)从频率分布直方图中,估计本次考试的平均分;
(Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,在[70,100]记1分,用X表示抽取结束后的总记分,求X的分布列和数学期望.

manfen5.com 满分网 查看答案
如图,在底面是正方形的四棱锥P-ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
(I)求证:PD⊥BC;
(II)求二面角B-PD-C的正切值.

manfen5.com 满分网 查看答案
在△ABC中,角A、B、C的对边分别为a、b、c,向量 manfen5.com 满分网=(sinA,b+c),manfen5.com 满分网=(a-c,sinC-sinB),满足|manfen5.com 满分网+manfen5.com 满分网|=|manfen5.com 满分网-manfen5.com 满分网|.
(Ⅰ)求角B的大小;
(Ⅱ)设manfen5.com 满分网=(sin(C+manfen5.com 满分网),manfen5.com 满分网),manfen5.com 满分网=(2k,cos2A) (k>1),manfen5.com 满分网manfen5.com 满分网有最大值为3,求k的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.