满分5 > 高中数学试题 >

的展开式中的常数项是 .(用数字作答)

manfen5.com 满分网的展开式中的常数项是    .(用数字作答)
利用二项展开式的通项公式求出展开式的通项,令x的指数为0,求出r,将r的值代入通项求出常数项. 【解析】 展开式的通项为Tr+1=(-1)rC6rx6-2r 令6-2r=0得r=3 所以展开式的. 故答案为-20
复制答案
考点分析:
相关试题推荐
函数manfen5.com 满分网的最小正周期是    查看答案
设点F是抛物L:y2=2px(p>0)的焦点,P1,P2,…,Pn是抛物线L上的n个不同的点n(n≥3,n∈N*).
(1)当p=2时,试写出抛物线L上三点P1、P2、P3的坐标,时期满足manfen5.com 满分网
(2)当n≥3时,若manfen5.com 满分网,求证:manfen5.com 满分网
(3)当n>3时,某同学对(2)的逆命题,即:“若manfen5.com 满分网,则manfen5.com 满分网”开展了研究并发现其为假命题.
请你就此从以下三个研究方向中任选一个开展研究:
1.试构造一个说明该命题确实是假命题的反例;
2.对任意给定的大于3的正整数n,试构造该假命题反例的一般形式,并说明你的理由:
3.如果补充一个条件后能使该命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由.
查看答案
已知数列{an}是首项为2的等比数列,且满足manfen5.com 满分网
(1)求常数p的值和数列{an}的通项公式;
(2)若抽去数列中的第一项、第四项、第七项、…第3n-2项,…,余下的项按原来的顺序组成一个新的数列{bn},试写出数列
{bn}的通项公式;
(3)在(2)的条件下,设数列{bn}的前n项和为Tn,是否存在正整数n,使得manfen5.com 满分网?若存在,试求所有满足条件的正整数n的值,若不存在,请说明理由.
查看答案
已知△ABC中,manfen5.com 满分网,记manfen5.com 满分网
(1)求f(x)解析式及定义域;
(2)设g(x)=6m•f(x)+1,manfen5.com 满分网,是否存在正实数m,使函数g(x)的值域为manfen5.com 满分网?若存在,请求出m的值;若不存在,请说明理由.
查看答案
如图,已知圆锥体SO的侧面积为15π,底面半径OA和OB互相垂直,且OA=3,P是母线BS的中点.
(1)求圆锥体的体积;
(2)异面直线SO与PA所成角的大小(结果用反三角函数表示).

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.