满分5 > 高中数学试题 >

已知某几何体的直观图和三视图如图所示,其正视图为矩形,左视图为等腰直角三角形,俯...

已知某几何体的直观图和三视图如图所示,其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.
(Ⅰ)证明:BN⊥平面C1NB1
(Ⅱ)求平面CNB1与平面C1NB1所成角的余弦值;
manfen5.com 满分网
(Ⅰ)根据题意,可得BA,BC,BB1两两垂直,以BA,BB1,BC分别为x,y,z轴建立空间直角坐标系,用坐标表示点、向量,利用数量积证明NB⊥NB1,BN⊥B1C1,即可证明BN⊥平面C1NB1. (Ⅱ)是平面C1B1N的一个法向量,求出平面NCB1的一个法向量,利用向量的数量积,可求 二面角C-NB1-C1的余弦值. (Ⅰ)证明:∵该几何体的正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形, ∴BA,BC,BB1两两垂直. 以BA,BB1,BC分别为x,y,z轴建立空间直角坐标系如图.--------------(2分) 则B(0,0,0),N(4,4,0),B1(0,8,0),C1(0,8,4),C(0,0,4). ∴,.------------(4分) ∴NB⊥NB1,BN⊥B1C1. 又NB1与B1C1相交于B1,∴BN⊥平面C1NB1.-------------------(6分) (Ⅱ)【解析】 ∵BN⊥平面C1NB1,∴是平面C1B1N的一个法向量,------------(8分) 设为平面NCB1的一个法向量,则,∴ 所以可取.------------(10分) 则cos== ∴所求二面角C-NB1-C1的余弦值为.------------(12分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x2-2(n+1)x+n2+5n-7.
(Ⅰ)设函数y=f(x)的图象的顶点的纵坐标构成数列{an},求证:{an}为等差数列;
(Ⅱ)设函数y=f(x)的图象的顶点到x轴的距离构成数列{bn},求{bn}的前n项和Sn
查看答案
manfen5.com 满分网已知函数f(x)=Asin(wx+φ),(A>0,w>0,|φ|<manfen5.com 满分网,x∈R)的图象的一部分如图所示.
(1)求函数f(x)的解析式;
(2)当x∈[-6,manfen5.com 满分网]时,求函数y=f(x)+f(x+2)的最大值与最小值及相应的x的值.
查看答案
(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(1)(几何证明选讲选做题)如图,点A,B,C是圆O上的点,且BC=6,∠BAC=120°,则圆O的面积等于   
(2)(不等式选讲选做题)若存在实数x满足|x-3|+|x-m|<5,则实数m的取值范围为   
(3)(极坐标与参数方程选讲选做题)设曲线C的参数方程为manfen5.com 满分网(θ为参数),直线l的方程为x-3y+2=0,则曲线C上到直线l距离为manfen5.com 满分网的点的个数有    个.
manfen5.com 满分网 查看答案
给出下列三个命题:
①若直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
②双曲线manfen5.com 满分网的离心率为manfen5.com 满分网
③若manfen5.com 满分网,则这两圆恰有2条公切线;
④若直线l1:a2x-y+6=0与直线l2:4x-(a-3)+9-0互相垂直,则a=-1.
其中正确命题的序号是    .(把你认为正确命题的序号都填上) 查看答案
已知manfen5.com 满分网manfen5.com 满分网,如果manfen5.com 满分网manfen5.com 满分网的夹角为锐角,则λ的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.