满分5 > 高中数学试题 >

已知函数. (Ⅰ)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;...

已知函数manfen5.com 满分网
(Ⅰ)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=x2-2x,若对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范围.
(Ⅰ)由函数,知(x>0).由曲线y=f(x)在x=1和x=3处的切线互相平行,能求出a的值. (Ⅱ)(x>0).根据a的取值范围进行分类讨论能求出f(x)的单调区间. (Ⅲ)对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),等价于在(0,2]上有f(x)max<g(x)max.由此能求出a的取值范围. 【解析】 (Ⅰ)∵函数, ∴(x>0). ∵曲线y=f(x)在x=1和x=3处的切线互相平行, ∴f'(1)=f'(3), 即, 解得. (Ⅱ)(x>0). ①当a≤0时,x>0,ax-1<0, 在区间(0,2)上,f'(x)>0; 在区间(2,+∞)上f'(x)<0, 故f(x)的单调递增区间是(0,2), 单调递减区间是(2,+∞). ②当时,, 在区间(0,2)和上,f'(x)>0; 在区间上f'(x)<0, 故f(x)的单调递增区间是(0,2)和,单调递减区间是 ③当时,,故f(x)的单调递增区间是(0,+∞). ④当时,,在区间和(2,+∞)上,f'(x)>0; 在区间上f'(x)<0, 故f(x)的单调递增区间是和(2,+∞),单调递减区间是. (Ⅲ)由已知,在(0,2]上有f(x)max<g(x)max. 由已知,g(x)max=0,由(Ⅱ)可知, ①当时,f(x)在(0,2]上单调递增, 故f(x)max=f(2)=2a-2(2a+1)+2ln2=-2a-2+2ln2, 所以,-2a-2+2ln2<0,解得a>ln2-1, 故. ②当时,f(x)在上单调递增, 在上单调递减, 故. 由可知, 2lna>-2,-2lna<2, 所以,-2-2lna<0,f(x)max<0, 综上所述,a>ln2-1.
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,A,B分别是椭圆的左右两个顶点,P为椭圆C上的动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P与A,B均不重合,设直线PA与PB的斜率分别为k1,k2,证明:k1•k2为定值;
(Ⅲ)M为过P且垂直于x轴的直线上的点,若manfen5.com 满分网,求点M的轨迹方程,并说明轨迹是什么曲线.
查看答案
某班同学利用五一节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念,则称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数分组低碳族
的人数
占本组
的频率
1[25,30)1200.6
2[30,35)195P
3[35,40)1000.5
4[40,45)a0.4
5[45,50)300.3
6[50,55)150.3
(1)请补全频率分布直方图,并求n、a、p的值;
(2)在所得样本中,从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和数学期望EX.

manfen5.com 满分网 查看答案
已知某几何体的直观图和三视图如图所示,其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.
(Ⅰ)证明:BN⊥平面C1NB1
(Ⅱ)求平面CNB1与平面C1NB1所成角的余弦值;
manfen5.com 满分网
查看答案
已知函数f(x)=x2-2(n+1)x+n2+5n-7.
(Ⅰ)设函数y=f(x)的图象的顶点的纵坐标构成数列{an},求证:{an}为等差数列;
(Ⅱ)设函数y=f(x)的图象的顶点到x轴的距离构成数列{bn},求{bn}的前n项和Sn
查看答案
manfen5.com 满分网已知函数f(x)=Asin(wx+φ),(A>0,w>0,|φ|<manfen5.com 满分网,x∈R)的图象的一部分如图所示.
(1)求函数f(x)的解析式;
(2)当x∈[-6,manfen5.com 满分网]时,求函数y=f(x)+f(x+2)的最大值与最小值及相应的x的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.