满分5 > 高中数学试题 >

过抛物线y2=4x的焦点,且被圆x2+y2-4x+2y=0截得弦最长的直线的方程...

过抛物线y2=4x的焦点,且被圆x2+y2-4x+2y=0截得弦最长的直线的方程是   
求出抛物线的焦点和圆心坐标,利用直线过圆心时,弦最长为圆的直径,用两点式求直线方程. 【解析】 抛物线y2=4x的焦点为(1,0),圆x2+y2-4x+2y=0 即 (x-2)2+(y+1)2=5,圆心为(2,-1), 由弦长公式可知,要使截得弦最长,需圆心到直线的距离最小,故直线过圆心时,弦最长为圆的直径. 由两点式得所求直线的方程 =,即 x+y-1=0, 故答案为:x+y-1=0.
复制答案
考点分析:
相关试题推荐
某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:
学生1号2号3号4号5号
甲班67787
乙班67679
则以上两组数据的方差中较大的一个=    查看答案
已知cos(α+manfen5.com 满分网)-sinα=manfen5.com 满分网,则sin(α-manfen5.com 满分网)的值是    查看答案
设F1、F2是离心率为manfen5.com 满分网的双曲线manfen5.com 满分网的左、右两个焦点,若双曲线右支上存在一点P,使manfen5.com 满分网(O为坐标原点)且|PF1|=λ|PF2|则λ的值为( )
A.2
B.manfen5.com 满分网
C.3
D.manfen5.com 满分网
查看答案
函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( )
A.(-1,1)
B.(-1,+∞)
C.(-∞,-l)
D.(-∞,+∞)
查看答案
已知平面区域D:manfen5.com 满分网,∀(a,b)∈D,a-2b≥0的概率是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.