满分5 > 高中数学试题 >

已知椭圆的方程为=1(a>b>0),它的一个焦点与抛物线y2=8x的焦点重合,离...

已知椭圆的方程为manfen5.com 满分网=1(a>b>0),它的一个焦点与抛物线y2=8x的焦点重合,离心率e=manfen5.com 满分网,过椭圆的右焦点F作与坐标轴不垂直的直线l,交椭圆于A、B两点.
(1)求椭圆的标准方程;
(2)设点M(1,0),且manfen5.com 满分网,求直线l的方程.
(1)由椭圆和y2=8x抛物线有共同的焦点,求出抛物线的焦点坐标,离心率,根据a2=b2+c2,即可求得椭圆C的方程; (2)设出直线l的方程和点A,B的坐标,并代入,联立联立消去y,得到关于x的一元二次方程,△>0,利用韦达定理即可求得. 【解析】 (1)设椭圆的右焦点为(c,0), 因为y2=8x的焦点坐标为(2,0),所以c=2 因为,则a2=5,b2=1 故椭圆方程为: (2)由(I)得F(2,0), 设l的方程为y=k(x-2)(k≠0) 代入,得(5k2+1)x2-20k2x+20k2-5=0, 设A(x1,y1),B(x2,y2), 则, ∴y1+y2=k(x1+x2-4),y1-y2=k(x1-x2) ∴ ∵,∴(x1+x2-2)(x2-x1)+(y2-y1)(y1+y2)=0∴, ∴ 所以直线l的方程为.
复制答案
考点分析:
相关试题推荐
某校高一(2)班共有60名同学参加期末考试,现将其数学学科成绩(均为整数)分成六个分数段[40,50),[50,60),…,[90,100],画出如右图所示的部分频率分布直方图,请观察图形信息,回答下列问题:
(I )求7O~80分数段的学生人数;
(II)估计这次考试中该学科的优分率(80分及以上为优分);
(III)现根据本次考试分数分成的六段(从低分段到高分段依次为第一组、第二组、…、第六组),为提高本班数学整体成绩,决定组与组之间进行帮扶学习.若选出的两组分数之差大于30分(以分数段为依据,不以具体学生分数为依据),则称这两组为“最佳组合”,试求选出的两组为“最佳组合”的概率.

manfen5.com 满分网 查看答案
已知f(x)=(2manfen5.com 满分网cosmanfen5.com 满分网+2sinmanfen5.com 满分网)cosmanfen5.com 满分网
(I)求f(manfen5.com 满分网)的值;
(II)在△ABC中,角A,B,C所对的边分别为a,b,c若f(c)=manfen5.com 满分网+1,且b2=ac,求sinA的值.
查看答案
如图,在正方体ABCD-A1B1C1D1中,E,F,G,H,M分别是棱AD,DD1,D1A1,A1A,AB的中点,点N在四边形EFGH的四边及其内部运动,则当N只需满足条件    时,就有MN⊥A1C1;当N只需满足条件    时,就有MN∥平面B1D1C.
manfen5.com 满分网 查看答案
表中数阵称为“森德拉姆筛”,其特点是每行每列都是等差数列,则表中数字206共出现    次.

234567
35791113
4710131619
5913172125
61116212631
71319253137
查看答案
已知函数manfen5.com 满分网,那么不等式f(x)≥1的解集为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.