满分5 > 高中数学试题 >

已知f(x)=ax-lnx,x∈(0,e],其中e是自然常数,a∈R (Ⅰ)当a...

已知f(x)=ax-lnx,x∈(0,e],其中e是自然常数,a∈R
(Ⅰ)当a=1时,求f(x)在(2,f(2))处的切线方程;
(Ⅱ)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.
(Ⅰ)把a=1代入求出其导函数,进而求出f'(2)以及f(2)即可求出方程; (II)先求出其导函数以及导数为0的根,比较根与区间两端点的大小关系,求出其在x∈(0,e]上的单调性以及在x∈(0,e]上的最小值;即可判断出是否存在a.. 【解析】 (Ⅰ)∵f(x)=x-lx,f'(x)=1-=(1分) ∴切线斜率为f'(2)=,切点(2,2-ln2), ∴切线的方程为x-2y+2-2ln2=0 (Ⅱ)假设存在实数a,使f(x)=ax-lnx(x∈(0,e])有最小值3, f'(x)=a-= ①当a≤0时,f(x)在(0,e]上单调递减,f(x)min=f(e)=ae-1=3⇒a=(舍去),所以,此时f(x)无最小值.(11分) ②当0<<e时,f(x)在(0,)上单调递减,在( ,e]上单调递增 f(x)min=f( )=1+lna=3,a=e2,满足条件.(12分) ③当 ≥e时,f(x)在(0,e]上单调递减,f(x)min=f(e)=ae-1=3⇒a=(舍去),所以,此时f(x)无最小值. 综上,存在实数a=e2,使得当x∈(0,e]时f(x)有最小值3.(14分)
复制答案
考点分析:
相关试题推荐
已知椭圆的方程为manfen5.com 满分网=1(a>b>0),它的一个焦点与抛物线y2=8x的焦点重合,离心率e=manfen5.com 满分网,过椭圆的右焦点F作与坐标轴不垂直的直线l,交椭圆于A、B两点.
(1)求椭圆的标准方程;
(2)设点M(1,0),且manfen5.com 满分网,求直线l的方程.
查看答案
某校高一(2)班共有60名同学参加期末考试,现将其数学学科成绩(均为整数)分成六个分数段[40,50),[50,60),…,[90,100],画出如右图所示的部分频率分布直方图,请观察图形信息,回答下列问题:
(I )求7O~80分数段的学生人数;
(II)估计这次考试中该学科的优分率(80分及以上为优分);
(III)现根据本次考试分数分成的六段(从低分段到高分段依次为第一组、第二组、…、第六组),为提高本班数学整体成绩,决定组与组之间进行帮扶学习.若选出的两组分数之差大于30分(以分数段为依据,不以具体学生分数为依据),则称这两组为“最佳组合”,试求选出的两组为“最佳组合”的概率.

manfen5.com 满分网 查看答案
已知f(x)=(2manfen5.com 满分网cosmanfen5.com 满分网+2sinmanfen5.com 满分网)cosmanfen5.com 满分网
(I)求f(manfen5.com 满分网)的值;
(II)在△ABC中,角A,B,C所对的边分别为a,b,c若f(c)=manfen5.com 满分网+1,且b2=ac,求sinA的值.
查看答案
如图,在正方体ABCD-A1B1C1D1中,E,F,G,H,M分别是棱AD,DD1,D1A1,A1A,AB的中点,点N在四边形EFGH的四边及其内部运动,则当N只需满足条件    时,就有MN⊥A1C1;当N只需满足条件    时,就有MN∥平面B1D1C.
manfen5.com 满分网 查看答案
表中数阵称为“森德拉姆筛”,其特点是每行每列都是等差数列,则表中数字206共出现    次.

234567
35791113
4710131619
5913172125
61116212631
71319253137
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.