满分5 > 高中数学试题 >

已知函数. (Ⅰ)若函数在区间(其中a>0)上存在极值,求实数a的取值范围; (...

已知函数manfen5.com 满分网
(Ⅰ)若函数在区间manfen5.com 满分网(其中a>0)上存在极值,求实数a的取值范围;
(Ⅱ)如果当x≥1时,不等式manfen5.com 满分网恒成立,求实数k的取值范围;
(Ⅲ)求证[(n+1)!]2>(n+1)•en-2(n∈N*).
(Ⅰ)求出函数的极值,在探讨函数在区间(其中a>0)上存在极值,寻找关于a的不等式,求出 实数a的取值范围; (Ⅱ)如果当x≥1时,不等式恒成立,把k分离出来,转化为求函数最值. (Ⅲ)借助于(Ⅱ)的结论证明不等式. 【解析】 (Ⅰ)因为,x>0,则, 当0<x<1时,f′(x)>0;当x>1时,f′(x)<0. 所以f(x)在(0,1)上单调递增;在(1,+∞)上单调递减, 所以函数f(x)在x=1处取得极大值. 因为函数f(x)在区间(其中a>0)上存在极值, 所以,解得. (Ⅱ)不等式, 即为,记, 所以, 令h(x)=x-lnx,则,∵x≥1,∴h′(x)≥0. ∴h(x)在[1,+∞)上单调递增,∴[h(x)]min=h(1)=1>0, 从而g′(x)>0 故g(x)在[1,+∞)上也单调递增, ∴[g(x)]min=g(1)=2,所以k≤2 (3)由(2)知:恒成立, 即, 令x=n(n+1),则, 所以, ,, . 叠加得:ln[1×22×32× = 则1×22×32×n2×(n+1)>en-2, 所以[(n+1)!]2>(n+1)•en-2(n∈N*)
复制答案
考点分析:
相关试题推荐
已知双曲线manfen5.com 满分网的离心率为manfen5.com 满分网,左、右焦点分别为F1、F2,在双曲线C上有一点M,使MF1⊥MF2,且△MF1F2的面积为.
(1)求双曲线C的方程;
(2)过点P(3,1)的动直线 l与双曲线C的左、右两支分别交于两点A、B,在线段AB上取异于A、B的点Q,满足|AP|•|QB|=|AQ|•|PB|,证明:点Q总在某定直线上.
查看答案
已知数列{an}是各项均不为0的等差数列,公差为d,Sn 为其前n项和,且满足an2=S2n-1,n∈N*.数列{bn}满足bn=manfen5.com 满分网,Tn为数列{bn}的前n项和.
(1)求数列{an}的通项公式和Tn
(2)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn,成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.
查看答案
如图所示,在边长为12的正方形ADD1A1中,点B,C在线段AD上,且AB=3,BC=4,作BB1∥AA1,分别交A1D1、AD1于点B1、P,作CC1∥AA1,分别交A1D1、AD1于点C1、Q,将该正方形沿BB1、CC1折叠,使得DD1与AA1重合,构成如图所示的三棱柱ABC-A1B1C1
(1)求证:AB⊥平面BCC1B1
(2)求四棱锥A-BCQP的体积;
(3)求二面角A-PQ-C的大小.

manfen5.com 满分网 查看答案
张先生的鱼缸中有7条鱼,其中6条青鱼和1条黑鱼,计划从当天开始,每天中午从该鱼缸中抓出1条鱼(每条鱼被抓到的概率相同)并吃掉.若黑鱼未被抓出,则它每晚要吃掉1条青鱼(规定青鱼不吃鱼).
(1)求这7条鱼中至少有6条被张先生吃掉的概率;
(2)以X表示这7条鱼中被张先生吃掉的鱼的条数,求X的分布列及其数学期望EX.
查看答案
已知函数manfen5.com 满分网
(I)求函数f(x)的单调递增区间;
(II)记△ABC的内角A、B、C所对的边长分别为a、b、c若manfen5.com 满分网,△ABC的面积manfen5.com 满分网,求b+c的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.