满分5 > 高中数学试题 >

已知不等式2|x-3|+|x-4|<2a. (Ⅰ)若a=1,求不等式的解集; (...

已知不等式2|x-3|+|x-4|<2a.
(Ⅰ)若a=1,求不等式的解集;
(Ⅱ)若已知不等式的解集不是空集,求a的取值范围.
(Ⅰ)对于不等式 2|x-3|+|x-4|<2,分x≥4、3<x<4、x≤3三种情况分别求出解集,再取并集,即得所求. (Ⅱ)化简f(x)的解析式,求出f(x)的最小值,要使不等式的解集不是空集,2a大于f(x)的最小值,由此求得a的取值范围. 【解析】 (Ⅰ)对于不等式 2|x-3|+|x-4|<2, ①若x≥4,则3x-10<2,x<4,∴舍去. ②若3<x<4,则x-2<2,∴3<x<4. ③若x≤3,则10-3x<2,∴<x≤3. 综上,不等式的解集为. …(5分) (Ⅱ)设f(x)=2|x-3|+|x-4|,则f(x)=,∴f(x)≥1. 要使不等式的解集不是空集,2a大于f(x)的最小值, 故 2a>1,∴, 即a的取值范围(,+∞).  …(10分)
复制答案
考点分析:
相关试题推荐
选修4-4:坐标系与参数方程
在极坐标系中,圆C的方程为ρ=2manfen5.com 满分网sin(θ+manfen5.com 满分网),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为manfen5.com 满分网(t为参数).
(Ⅰ)求直线l和圆C的直角坐标方程;
(Ⅱ)判断直线l和圆C的位置关系.
查看答案
manfen5.com 满分网如图,A,B,C,D四点在同一圆上,BC与AD的延长线交于点E,点F在BA的延长线上.
(Ⅰ)若manfen5.com 满分网,求manfen5.com 满分网的值;
(Ⅱ)若EF2=FA•FB,证明:EF∥CD.
查看答案
已知函数f(x)=manfen5.com 满分网-2x2+lnx.
(Ⅰ)若a=1,求函数f(x)的极值;
(Ⅱ)若函数f(x)在区间[1,2]上为单调递增函数,求实数a的取值范围.
查看答案
已知椭圆M:manfen5.com 满分网(a>b>0)的离心率为manfen5.com 满分网,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+4manfen5.com 满分网
(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l:x=ky+m与椭圆M交手A,B两点,若以AB为直径的圆经过椭圆的右顶点C,求m的值.
查看答案
某高中三年级有一个实验班和一个对比班,各有50名同学.根据这两个班市二模考    试的数学科目成绩(规定考试成绩在[120,150]内为优秀),统计结果如下:
实验班数学成绩的频数分布表:
分组[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140.150]
频数1212131291
对比班数学成绩的频数分布表:
分组[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140.150]
频数23131191011
(Ⅰ)分别求这两个班数学成绩的优秀率;若采用分层抽样从实验班中抽取15位同学的数学试卷,进行试卷分析,则从该班数学成绩为优秀的试卷中应抽取多少份?
(Ⅱ)统计学中常用M值作为衡量总体水平的一种指标,已知M与分数t的关系式为:manfen5.com 满分网,分别求这两个班学生数学成绩的M总值,并据此对这两个班数学成绩总体水平作一简单评价.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.