满分5 > 高中数学试题 >

已知函数f(x)=lnx,g(x)=ex. ( I)若函数φ(x)=f(x)-,...

已知函数f(x)=lnx,g(x)=ex
( I)若函数φ(x)=f(x)-manfen5.com 满分网,求函数φ(x)的单调区间;
(Ⅱ)设直线l为函数的图象上一点A(x,f (x))处的切线.证明:在区间(1,+∞)上存在唯一的x,使得直线l与曲线y=g(x)相切.
(Ⅰ)求导函数,确定导数恒大于0,从而可得求函数φ (x)的单调区间; (Ⅱ)先求直线l为函数的图象上一点A(x,f (x))处的切线方程,再设直线l与曲线y=g(x)相切于点,进而可得,再证明在区间(1,+∞)上x存在且唯一即可. (Ⅰ)【解析】 =,.(2分) ∵x>0且x≠1,∴φ'(x)>0 ∴函数φ(x)的单调递增区间为(0,1)和(1,+∞).(4分) (Ⅱ)证明:∵,∴, ∴切线l的方程为, 即,①(6分) 设直线l与曲线y=g(x)相切于点, ∵g'(x)=ex,∴,∴x1=-lnx.(8分) ∴直线l也为, 即,②(9分) 由①②得 , ∴.(11分) 下证:在区间(1,+∞)上x存在且唯一. 由(Ⅰ)可知,φ(x)=在区间(1,+∞)上递增. 又,,(13分) 结合零点存在性定理,说明方程φ(x)=0必在区间(e,e2)上有唯一的根,这个根就是所求的唯一x. 故结论成立.
复制答案
考点分析:
相关试题推荐
如图,曲线C1是以原点O为中心、F1,F2为焦点的椭圆的一部分,曲线C2是以O为顶点、F2为焦点的抛物线的一部分,A是曲线C1和C2的交点且∠AF2F1为钝角,若|AF1|=manfen5.com 满分网,|AF2|=manfen5.com 满分网
(1)求曲线C1和C2的方程;
(2)过F2作一条与x轴不垂直的直线,分别与曲线C1、C2依次交于B、C、D、E四点,若G为CD中点、H为BE中点,问manfen5.com 满分网是否为定值?若是求出定值;若不是说明理由.

manfen5.com 满分网 查看答案
如图,在底面为直角梯形的四棱锥P-ABCD中AD∥BC,PD⊥平面ABCD,AD=1,AB=manfen5.com 满分网,BC=4.
(Ⅰ)求直线AB与平面PDC所成的角;
(Ⅱ)设点E在棱PC上,manfen5.com 满分网manfen5.com 满分网,若DE∥平面PAB,求λ的值.

manfen5.com 满分网 查看答案
已知数列{an}满足a1=1,且an=2an-1+2n(n≥2且n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项之和Sn,求Sn,并证明:manfen5.com 满分网>2n-3.
查看答案
已知函数manfen5.com 满分网,x∈R,将函数f(x)向左平移manfen5.com 满分网个单位后得函数g(x),设△ABC三个角A、B、C的对边分别为a、b、c.
(Ⅰ)若manfen5.com 满分网,f(C)=0,sinB=3sinA,求a、b的值;
(Ⅱ)若g(B)=0且manfen5.com 满分网manfen5.com 满分网,求manfen5.com 满分网的取值范围.
查看答案
有六根细木棒,其中较长的两根分别为manfen5.com 满分网a、manfen5.com 满分网a,其余四根均为a,用它们搭成三棱锥,则其中两条较长的棱所在的直线的夹角的余弦值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.