满分5 > 高中数学试题 >

如图,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,A...

manfen5.com 满分网如图,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD=manfen5.com 满分网
(Ⅰ)求证:AE∥平面DCF;
(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为60°?
(Ⅰ)过点E作EG⊥CF并CF于G,连接DG,证明AE平行平面DCF内的直线DG,即可证明AE∥平面DCF; (Ⅱ)过点B作BH⊥EF交FE的延长线于H,连接AH,说明∠AHB为二面角A-EF-C的平面角,通过二面角A-EF-C的大小为60°,求出AB即可. (Ⅰ)证明:过点E作EG⊥CF并CF于G,连接DG,可得四边形BCGE为矩形.又ABCD为矩形, 所以AD⊥∥EG,从而四边形ADGE为平行四边形,故AE∥DG. 因为AE⊄平面DCF,DG⊂平面DCF,所以AE∥平面DCF. (Ⅱ)【解析】 过点B作BH⊥EF交FE的延长线于H,连接AH. 由平面ABCD⊥平面BEFG,AB⊥BC,得 AB⊥平面BEFC, 从而AH⊥EF, 所以∠AHB为二面角A-EF-C的平面角. 在Rt△EFG中,因为EG=AD=. 又因为CE⊥EF,所以CF=4, 从而BE=CG=3. 于是BH=BE•sin∠BEH=. 因为AB=BH•tan∠AHB, 所以当AB=时,二面角A-EF-G的大小为60°. 【考点】空间点、线、面位置关系,空间向量与立体几何. 【点评】由于理科有空间向量的知识,在解决立体几何试题时就有两套根据可以使用,这为考生选择解题方案提供了方便,但使用空间向量的方法解决立体几何问题也有其相对的缺陷,那就是空间向量的运算问题,空间向量有三个分坐标,在进行运算时极易出现错误,而且空间向量方法证明平行和垂直问题的优势并不明显,所以在复习立体几何时,不要纯粹以空间向量为解题的工具,要注意综合几何法的应用.
复制答案
考点分析:
相关试题推荐
(1)已知△ABC中,角A,B,C的对边分别是a,b,c,manfen5.com 满分网manfen5.com 满分网=3,a=2manfen5.com 满分网,b+c=6,求cosA.
(2)设f(x)=-2cos2manfen5.com 满分网x+sin(manfen5.com 满分网x-manfen5.com 满分网)+1,当x∈[-manfen5.com 满分网,0]时,求y=f(x)的最大值.
查看答案
已知书架中甲层有英语书2本和数学书3本,乙层有英语书1本和数学书4本.现从甲、乙两层中各取两本书.
(1)求取出的4本书都是数学书的概率.
(2)求取出的4本书中恰好有1本是英语书的概率.
查看答案
对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点,且有如下零点存在定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b<0,那么,函数y=f(x)在区间(a,b)内有零点.给出下列命题:
①若函数y=f(x)有反函数,则f(x)有且仅有一个零点;
②函数f(x)=2x3-3x+1有3个零点;
③函数y=manfen5.com 满分网和y=|log2x|的图象的交点有且只有一个;
④设函数f(x)对x∈R都满足f(3+x)=f(3-x),且函数f(x)恰有6个不同的零点,则这6个零点的和为18;
其中所有正确命题的序号为    .(把所有正确命题的序号都填上) 查看答案
设三棱柱的侧棱垂直于底面,所有棱的长都为3,顶点都在一个球面上,则该球的表面积为    查看答案
过抛物线x=manfen5.com 满分网y2的焦点且倾斜角为45°的直线方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.