满分5 > 高中数学试题 >

已知f(x)=ax3+bx2+cx+d是定义在R上的函数,它在[-1,0]和[4...

已知f(x)=ax3+bx2+cx+d是定义在R上的函数,它在[-1,0]和[4,5]上有相同的单调性,在[0,2]和[4,5]上有相反的单调性.
(Ⅰ)求c的值;
(Ⅱ)在函数f(x)的图象上是否存在点M(x,y),使得f(x)在点M的切线斜率为3b?若存在,求出M点的坐标,若不存在,则说明理由;
(Ⅲ)设f(x)的图象交x轴于A、B、C三点,且B的坐标为(2,0),求线段AC的长度|AC|的取值范围.
(1)利用函数f(x)的单调区间判断出x=0是函数的极值点,利用函数在极值点处的导数值为0,列出方程求出c的值. (2)将c的值代入导函数,令导函数为0求出方程的两个根即两个极值点,据函数的单调性,判断出根 与区间端点的关系,列出不等式组求出 的范围.假设存在,根据导数的几何意义,列出方程,通过判断判别式的符号得到结论. (3)设出f(x)的三个零点,写出f(x)的利用三个根不是的解析式,将x=2代入,利用韦达定理求出A,C的距离,据(2)求出|AC|的最值. 【解析】 (1)由条件可知f(x)在区间[-1,0]和[0,2]上有相反的单调性, ∴x=0是f(x)的一个极值点, ∴f′(0)=0 而f′(x)=3ax2+2bx+c, 故c=0. (2)令f′(x)=0,则3ax2+2bx=0, 解得 . 又f(x)在区间[0,2]和[4,5]上有相反的单调性, 得 解得 . 假设存在点M(x,y),使得f(x)在点M处的切线斜率为3b,则f'(x)=3b ∵,∴△<0,x无解 故不存在点M(x,y),使得f(x)在点M处的切线斜率为3b (3)设A(α,0),C(β,0), 则由题意可令f(x)=a(x-α)(x-2)(x-β)=a[x3-(2+α+β)x2+(2α+2β+αβ)x-2αβ]…(2分) 则 ,解得 又∵函数f(x)的图象交x轴于B(2,0), ∴f(2)=0即8a+4b+d=0 ∴d=-4(b+2a), 从而 = ∵ ∴当 时,|AC|max=;当 时,|AC|min=3. 所以3≤|AC|≤
复制答案
考点分析:
相关试题推荐
已知平面上一定点C(-1,0)和一定直线l:x=-4.P为该平面上一动点,作PQ⊥l,垂足为Q,manfen5.com 满分网
(1)问点P在什么曲线上,并求出该曲线方程;
(2)点O是坐标原点,A、B两点在点P的轨迹上,若manfen5.com 满分网,求λ的取值范围.
查看答案
数列{an}的前n项和为Sn,且a1=1,an+1=2Sn+n+1(n≥1).
(1)求数列{an}的通项公式;
(2)设等差数列{bn}各项均为正数,满足b1+b2+b3=18,且a1+b1+2,a2+b2,a3+b3-3成等比数列,证明:manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网manfen5.com 满分网
查看答案
manfen5.com 满分网如图,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD=manfen5.com 满分网
(Ⅰ)求证:AE∥平面DCF;
(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为60°?
查看答案
(1)已知△ABC中,角A,B,C的对边分别是a,b,c,manfen5.com 满分网manfen5.com 满分网=3,a=2manfen5.com 满分网,b+c=6,求cosA.
(2)设f(x)=-2cos2manfen5.com 满分网x+sin(manfen5.com 满分网x-manfen5.com 满分网)+1,当x∈[-manfen5.com 满分网,0]时,求y=f(x)的最大值.
查看答案
已知书架中甲层有英语书2本和数学书3本,乙层有英语书1本和数学书4本.现从甲、乙两层中各取两本书.
(1)求取出的4本书都是数学书的概率.
(2)求取出的4本书中恰好有1本是英语书的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.