满分5 > 高中数学试题 >

选修 4-5:不等式选讲 已知函数f(x)=|x-2|-|x+1|. (Ⅰ)若f...

选修 4-5:不等式选讲
已知函数f(x)=|x-2|-|x+1|.
(Ⅰ)若f(x)≤a恒成立,求a的取值范围;
(Ⅱ)解不等式f(x)≥x2-2x.
(Ⅰ)利用零点分段,化简函数,确定函数的最大值,使f(x)≤a恒成立,应有a≥fmax(x),即可求得a的取值范围; (Ⅱ)利用分段函数解析式,分别解不等式,即可确定不等式的解集. 【解析】 (Ⅰ)f(x)=|x-2|-|x+1|=,------------------(3分) 又当-1<x<2时,-3<-2x+1<3,∴-3≤f(x)≤3-----------------------------------------------(5分) ∴若使f(x)≤a恒成立,应有a≥fmax(x),即a≥3 ∴a的取值范围是:[3,+∞) (Ⅱ)当x≤-1时,x2-2x≤3,∴-1≤x≤2,∴x=1; 当-1<x<2时,x2-2x≤-2x+1,∴-1≤x≤1,∴-1<x≤1; 当x≥2时,x2-2x≤-3,无解;-------------------------(8分) 综合上述,不等式的解集为:[-1,1].-------------------------(10分)
复制答案
考点分析:
相关试题推荐
选修4-4:坐标系与参数方程.
在平面直角坐标系中,曲线C1的参数方程为manfen5.com 满分网(a>b>0,ϕ为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M(2,manfen5.com 满分网)对应的参数φ=manfen5.com 满分网;θ=manfen5.com 满分网;与曲线C2交于点D(manfen5.com 满分网manfen5.com 满分网
(1)求曲线C1,C2的方程;
(2)A(ρ,θ),Β(ρ2,θ+manfen5.com 满分网)是曲线C1上的两点,求manfen5.com 满分网+manfen5.com 满分网的值.
查看答案
manfen5.com 满分网如图,A,B,C,D四点在同一圆上,BC与AD的延长线交于点E,点F在BA的延长线上.
(Ⅰ)若manfen5.com 满分网,求manfen5.com 满分网的值;
(Ⅱ)若EF2=FA•FB,证明:EF∥CD.
查看答案
已知函数f(x)=manfen5.com 满分网x3-2x2+bx+a,g(x)=ln(1+2x)+x.
(1)求f(x)的单调区间.
(2)若f(x)与g(x)有交点,且在交点处的切线均为直线y=3x,求a,b的值并证明:在公共定义域内恒有f(x)≥g(x).
(3)设A(x1,g(x1)),B(x2,g(x2)),C(t,g(t))是y=g(x)图象上任意三点,且-manfen5.com 满分网<x1<t<x2,求证:割线AC的斜率大于割线BC的斜率.
查看答案
如图,椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的左右顶点为A1,A2,左右焦点为F1,F2,其中F1,F2是A1A2的三等分点,A是椭圆上任意一点,且|AF1|+|AF2|=6.
(1)求椭圆C的方程;
(2)设直线AF1与椭圆交于另一点B,与y轴交于一点C,记m=manfen5.com 满分网,n=manfen5.com 满分网,若点A在第一象限,求m+n的取值范围.

manfen5.com 满分网 查看答案
根据辽宁省期初教育工作会议精神,我省所有中小学全部取消晚自习,某校高二年级共有学生1000名,其中走读生750名,住宿生250名,现从该年级采用分层抽样的方法从该年级抽取n名学生进行问卷调查.根据问卷取得了这n名同学每天晚上有效学习时间(单位:分钟)的数据,按照以下区间分为八组
①[0,30),②[30,60),③[60,90),④[90,120),⑤[120,150),⑥[150,180),⑦[180,210),⑧[210,240),
得到频率分布直方图如下.已知抽取的学生中每天晚上有效学习时间少于60分钟的人数为5人;
(1)求n的值并补全下列频率分布直方图;
(2)如果把“学生晚上有效时间达到两小时”作为是否充分利用时间的标准,对抽取的n名学生,完成下列2×2列联表:
利用时间充分利用时间不充分总计
走读生502575
住宿生101525
总计6040100
是否有95%的把握认为学生利用时间是否充分与走读、住宿有关?
(3)若在第①组、第②组、第⑦组、第⑧组中共抽出3人调查影响有效利用时间的原因,记抽到“有效学习时间少于60分钟”的学生人数为X,求X的分布列及期望;
参考公式:K2=manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.