满分5 > 高中数学试题 >

已知抛物线C的顶点在原点,焦点为F(0,1). (Ⅰ)求抛物线C的方程; (Ⅱ)...

已知抛物线C的顶点在原点,焦点为F(0,1).
(Ⅰ)求抛物线C的方程;
(Ⅱ)在抛物线C上是否存在点P,使得过点P的直线交C于另一点Q,满足PF⊥QF,且PQ与C在点P处的切线垂直?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(Ⅰ)设抛物线C的方程是x2=ay,根据焦点为F的坐标求得a,进而可得抛物线的方程. (Ⅱ)设P(x1,y1),Q(x2,y2),进而可得抛物线C在点P处的切线方程和直线PQ的方程,代入抛物线方程根据韦达定理,可求得x1+x2和x1x2的表达式,根据×求得y1=4及点P的坐标. 【解析】 (Ⅰ)设抛物线C的方程是x2=ay, 则, 即a=4. 故所求抛物线C的方程为x2=4y. (Ⅱ)【解析】 设P(x1,y1),Q(x2,y2), 则抛物线C在点P处的切线方程是, 直线PQ的方程是. 将上式代入抛物线C的方程,得, 故x1+x2=,x1x2=-8-4y1, 所以x2=-x1,y2=+y1+4. 而=(x1,y1-1),=(x2,y2-1),×=x1x2+(y1-1)(y2-1) =x1x2+y1y2-(y1+y2)+1 =-4(2+y1)+y1(+y1+4)-(+2y1+4)+1 =y12-2y1--7 =(y12+2y1+1)-4(+y1+2) =(y1+1)2- ==0, 故y1=4,此时,点P的坐标是(±4,4). 经检验,符合题意. 所以,满足条件的点P存在,其坐标为P(±4,4).
复制答案
考点分析:
相关试题推荐
一个均匀的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为x1,x2,记ξ=(x1-3)2+(x2-3)2
(1)分别求出ξ取得最大值和最小值时的概率;
(2)求ξ的分布列及数学期望.
查看答案
如图,某小区准备绿化一块直径为AB的半圆形空地,O为圆心,C为圆周上一点,CD⊥AB于D,△ACD内为一水池,△ACD外栽种花草,若AB=100米,∠CAB=θ,y=AC+CD.
(1)试用θ表示y;
(2)求y的最大值.
manfen5.com 满分网 查看答案
已知Sn是等差数列{an}(n∈N*)的前n项和,且S6>S7>S5,有下列四个命题:①d<0;②S11>0;③S12<0;④数列{Sn}中的最大项为S11,其中正确命题的序号是    查看答案
manfen5.com 满分网现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为manfen5.com 满分网.类比到空间,有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为    查看答案
manfen5.com 满分网执行如图的程序框图,输出T=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.