满分5 > 高中数学试题 >

若关于x的不等式:x2+2x+a+2>0的解集为R,则实数a的取值范围为 .

若关于x的不等式:x2+2x+a+2>0的解集为R,则实数a的取值范围为   
根据题意,二次函数y=x2+2x+a+2的最小值大于0,结合二次函数的图象与性质求出这个最小值,建立关于a的不等式并解之,即得实数a的取值范围. 【解析】 ∵关于x的不等式:x2+2x+a+2>0的解集为R, ∴函数y=x2+2x+a+2的最小值大于0 ∵二次函数y=x2+2x+a+2的图象是开口向上的抛物线,关于直线x=-1对称 ∴y=x2+2x+a+2的最小值为f(-1)=1-2+a+2>0,解之得a>-1 故答案为:a>-1
复制答案
考点分析:
相关试题推荐
在△ABC中,a=7,b=5,c=3,则A=    查看答案
在等差数列{an}中,a1=3,11a3=5a8,则a10=    查看答案
已知椭圆的短轴大于焦距,则它的离心率的取值范围是    查看答案
“存在x∈R,x2+2>0”的否定是    查看答案
抛物线y2=4x的焦点坐标为    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.