满分5 > 高中数学试题 >

已知函数,g(x)=alnx+a. (1)a=1时,求F(x)=f(x)-g(x...

已知函数manfen5.com 满分网,g(x)=alnx+a.
(1)a=1时,求F(x)=f(x)-g(x)的单调区间;
(2)若x>1时,函数y=f(x)的图象总在函数y=g(x)的图象的上方,求实数a的取值范围.
(1)确定函数,求导函数,利用F'(x)≥0,确定函数的单调增区间;F'(x)≤0,确定函数的单调减区间; (2)构造F(x)=f(x)-g(x)(x>1),若x>1时,函数y=f(x)的图象总在函数y=g(x)的图象的上方,即F(x)>0恒成立,求出导函数.分类讨论,确定函数的最小值,从而可求实数a的取值范围. 【解析】 (1)a=1时,, 则…(3分) 令F'(x)≥0有:x≤0(舍去)或x≥1;令F'(x)≤0有0≤x≤1…(5分) 故F(x)的单增区间为[1,+∞);单减区间为(0,1].…(6分) (2)构造F(x)=f(x)-g(x)(x>1),即 则. ①当a≤e时,ex-a>0成立,则x>1时,F'(x)>0,即F(x)在(1,+∞)上单增,…(7分) 令F(1)=e-a-a≥0,∴,故…(8分) ②a>e时,F'(x)=0有x=1或x=lna>1 令F'(x)≥0有x≤1或x≥lna;令F'(x)≤0有1≤x≤lna…(9分) 即F(x)在(1,lna]上单减;在[lna,+∞)上单增…(10分) 故F(x)min=F(lna)=-aln(lna)-a>0,∴,舍去…(11分) 综上所述,实数a的取值范围…(12分)
复制答案
考点分析:
相关试题推荐
如图,把边长为2的正六边形ABCDEF沿对角线BE折起,使manfen5.com 满分网
(1)求证:面ABEF⊥面BCDE;
(2)求五面体ABCDEF的体积.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网,若f(x)的最大值为1.
(1)求m的值,并求f(x)的单调递增区间;
(2)在△ABC中,角A、B、C的对边a、b、c,若manfen5.com 满分网,且manfen5.com 满分网,试判断三角形的形状.
查看答案
某省重点中学从高二年级学生中随机地抽取120名学生,测得身高情况如下表所示.
(1)请在频率分布表中的①,②位置上填上适当的数据,并补全频率分布直方图;
分组频数频率
[160,165)60.05
[165,170)270.225
[170,175)42
[175,180)360.3
[180,185)0.05
[185,180)30.0258
合计1201
(2)现从180cm~190cm这些同学中随机地抽取两名,求身高为185cm以上(包括185cm)的同学被抽到的概率.

manfen5.com 满分网 查看答案
在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”.则圆(x-4)2+(y-3)2=4上一点与直线x+y=0上一点的“折线距离”的最小值是    查看答案
半径为r的圆的面积S(r)=πr2,周长C(r)=2πr,若将r看作(0,+∞)上的变量,则(πr2)′=2πr①.
①式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R的球,若将R看作(0,+∞)上的变量,请你写出类似于①的式子②:    ,②式可以用语言叙述为:    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.