满分5 > 高中数学试题 >

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=...

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(Ⅰ)证明:AE⊥PD;
(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为manfen5.com 满分网,求二面角E-AF-C的余弦值.

manfen5.com 满分网
(1)要证明AE⊥PD,我们可能证明AE⊥面PAD,由已知易得AE⊥PA,我们只要能证明AE⊥AD即可,由于底面ABCD为菱形,故我们可以转化为证明AE⊥BC,由已知易我们不难得到结论. (2)由EH与平面PAD所成最大角的正切值为,我们分析后可得PA的值,由(1)的结论,我们进而可以证明平面PAC⊥平面ABCD,则过E作EO⊥AC于O,则EO⊥平面PAC,过O作OS⊥AF于S,连接ES,则∠ESO为二面角E-AF-C的平面角,然后我们解三角形ASO,即可求出二面角E-AF-C的余弦值. 证明:(Ⅰ)证明:由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形. 因为E为BC的中点,所以AE⊥BC. 又BC∥AD,因此AE⊥AD. 因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE. 而PA⊂平面PAD,AD⊂平面PAD且PA∩AD=A, 所以AE⊥平面PAD.又PD⊂平面PAD, 所以AE⊥PD. 【解析】 (Ⅱ)设AB=2,H为PD上任意一点,连接AH,EH. 由(Ⅰ)知AE⊥平面PAD, 则∠EHA为EH与平面PAD所成的角. 在Rt△EAH中,, 所以当AH最短时,∠EHA最大, 即当AH⊥PD时,∠EHA最大. 此时, 因此.又AD=2,所以∠ADH=45°, 所以PA=2. 因为PA⊥平面ABCD,PA⊂平面PAC, 所以平面PAC⊥平面ABCD. 过E作EO⊥AC于O,则EO⊥平面PAC, 过O作OS⊥AF于S,连接ES,则∠ESO为二面角E-AF-C的平面角, 在Rt△AOE中,,, 又F是PC的中点,在Rt△ASO中,, 又, 在Rt△ESO中,, 即所求二面角的余弦值为.
复制答案
考点分析:
相关试题推荐
数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1,等差数列{bn}满足b3=3,b5=9,(1)分别求数列{an},{bn}的通项公式;
(2)若对任意的n∈N*manfen5.com 满分网恒成立,求实数k的取值范围.
查看答案
已知函数manfen5.com 满分网,若f(x)的最大值为1.
(1)求m的值,并求f(x)的单调递增区间;
(2)在△ABC中,角A、B、C的对边a、b、c,若manfen5.com 满分网,且manfen5.com 满分网,试判断三角形的形状.
查看答案
在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”.则圆(x-4)2+(y-3)2=4上一点与直线x+y=0上一点的“折线距离”的最小值是    查看答案
已知公比不为1的等比数列{an}的前n项和为Sn,若a1=1,且4a1,3a2,2a3成等差数列,则manfen5.com 满分网的最大值是    查看答案
从3名男生和2名女生中选出2名学生参加某项活动,则选出的2人中至少有1名女生的概率为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.