如图,已知点C在圆O直径BE的延长线上,CA切圆O于A点,DC是∠ACB的平分线并交AE于点F、交AB于D点,求∠ADF.
考点分析:
相关试题推荐
已知椭圆C
1、抛物线C
2的焦点均在x轴上,C
1的中心和C
2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
(Ⅰ)求C
1、C
2的标准方程;
(Ⅱ)请问是否存在直线l满足条件:①过C
2的焦点F;②与C
1交不同两点M、N且满足
?若存在,求出直线l的方程;若不存在,说明理由.
查看答案
设{a
n}是公比大于1的等比数列,S
n为数列{a
n}的前n项和.已知S
3=7,且a
1+3,3a
2,a
3+4构成等差数列.
(1)求数列{a
n}的通项公式.
(2)令b
n=lna
3n+1,n=1,2,…,求数列{b
n}的前n项和T
n.
查看答案
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2,AB=1.
(Ⅰ)求四棱锥P-ABCD的体积V;
(Ⅱ)若F为PC的中点,求证:平面PAC⊥平面AEF.
查看答案
有关部门要了解甲型H1N1流感预防知识在学校的普及情况,命制了一份有10道题的问卷到各学校做问卷调查.某中学A、B两个班各被随机抽取5名学生接受问卷调查,A班5名学生得分为:5,8,9,9,9;B班5名学生得分为:6,7,8,9,10.
(Ⅰ)请你估计A、B两个班中哪个班的问卷得分要稳定一些;
(Ⅱ)如果把B班5名学生的得分看成一个总体,并用简单随机抽样方法从中抽取样本容量为2的样本,求样本平均数与总体平均数之差的绝对值不小于1的概率.
查看答案
已知函数f(x)=
.
(Ⅰ) 求函数f(x)的最小值和最小正周期;
(Ⅱ)已知△ABC内角A,B,C的对边分别为a,b,c,且c=3,f(C)=0,若向量
与
共线,求a,b的值.
查看答案