满分5 > 高中数学试题 >

已知函数,. (1)若a=2,求f(x)=f1(x)+f2(x)在x∈[2,3]...

已知函数manfen5.com 满分网manfen5.com 满分网
(1)若a=2,求f(x)=f1(x)+f2(x)在x∈[2,3]上的最小值;
(2)若x∈[a,+∞)时,f2(x)≥f1(x),求a的取值范围;
(3)求函数manfen5.com 满分网在x∈[1,6]上的最小值.
(1)因为a=2,且x∈[2,3],所以f(x)=e|x-3|+e|x-2|+1=e3-x+ex-1,利用基本不等式,可求在x∈[2,3]上的最小值; (2)由题意知,当x∈[a,+∞) 时,e|x-2a+1|≤e|x-a|+1,即|x-2a+1|≤|x-a|+1 恒成立即2ax≥3a2-2a 对x∈[a,+∞) 恒成立,由此可求a的取值范围; (3)记h1(x)=|x-(2a-1)|,h2(x)=|x-a|+1,则h1(x),h2(x)的图象分别是以(2a-1,0)和(a,1)为顶点开口向上的V型线,且射线的斜率均为±1,分类讨论,即可求得g(x)在x∈[1,6]上的最小值. 【解析】 (1)因为a=2,且x∈[2,3],所以f(x)=e|x-3|+e|x-2|+1=e3-x+ex-1==2e, 当且仅当x=2时取等号,所以f(x)在x∈[2,3]上的最小值为2e …4分 (2)由题意知,当x∈[a,+∞) 时,e|x-2a+1|≤e|x-a|+1,即|x-2a+1|≤|x-a|+1 恒成立…6分 所以|x-2a+1|≤x-a+1,即2ax≥3a2-2a 对x∈[a,+∞) 恒成立, 则由,得所求a的取值范围是0≤a≤2…9分 (3)记h1(x)=|x-(2a-1)|,h2(x)=|x-a|+1,则h1(x),h2(x)的图象分别是以(2a-1,0)和(a,1)为顶点开口向上的V型线,且射线的斜率均为±1. ①当1≤2a-1≤6,即1≤a≤时,∴g(x)在x∈[1,6]上的最小值为f1(2a-1)=e=1…10分 ②当a<1时,可知2a-1<a,所以 (ⅰ)当h1(a)≤h2(a),得|a-(2a-1)|≤1,即-2≤a≤0时,在x∈[1,6]上,h1(x)<h2(x),即f1(x)>f2(x),所以g(x)=f2(x)的最小值为f2(1)=e2-a; (ii)当h1(a)>h2(a),得|a-(2a-1)|>1,即a<-2或0<a<1时,在x∈[1,6]上,h1(x)>h2(x),即f1(x)<f2(x),所以g(x)=f1(x)的最小值为f1(1)=e3-2a; ③当a>时,因为2a-1>a,可知2a-1>6,且h1(6)=2a-7>a-5=h2(6),所以 (ⅰ)当时,g(x)的最小值为f2(a)=e (ii)当a>6时,因为h1(a)=a-1>1=h2(a),∴在x∈[1,6]上,h1(x)>h2(x),即f1(x)<f2(x),所以g(x)在x∈[1,6]上的最小值为f2(6)=ea-5…15分 综上所述,函数g(x)在x∈[1,6]上的最小值为…16分
复制答案
考点分析:
相关试题推荐
在数列{an}中,a1=1,且对任意的k∈N*,a2k-1,a2k,a2k+1成等比数列,其公比为qk
(1)若qk=2(k∈N*),求a1+a3+a5+…+a2k-1
(2)若对任意的k∈N*,a2k,a2k+1,a2k+2成等差数列,其公差为dk,设manfen5.com 满分网
①求证:{bk}成等差数列,并指出其公差;
②若d1=2,试求数列{dk}的前k项的和Dk
查看答案
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,且过点manfen5.com 满分网,记椭圆的左顶点为A.
(1)求椭圆的方程;
(2)设垂直于y轴的直线l交椭圆于B,C两点,试求△ABC面积的最大值;
(3)过点A作两条斜率分别为k1,k2的直线交椭圆于D,E两点,且k1k2=2,求证:直线DE恒过一个定点.

manfen5.com 满分网 查看答案
因客流量临时增大,某鞋店拟用一个高为50cm(即EF=50cm)的平面镜自制一个竖直摆放的简易鞋镜.根据经验,一般顾客AB的眼睛B到地面的距离x(cm)在区间[140,180]内.设支架FG高为h(0<h<90)cm,AG=100cm,顾客可视的镜像范围为CD(如图所示),记CD的长度为y(y=GD-GC).
(1)当h=40cm时,试求y关于x的函数关系式和y的最大值;
(2)当顾客的鞋A在镜中的像A1满足不等关系GC<GA1≤GD(不计鞋长)时,称顾客可在镜中看到自己的鞋,若一般顾客都能在镜中看到自己的鞋,试求h的取值范围.

manfen5.com 满分网 查看答案
设△ABC的内角A,B,C的对边长分别为a,b,c,且manfen5.com 满分网
(1)求证:manfen5.com 满分网
(2)若cos(A-C)+cosB=1,求角B的大小.
查看答案
在四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AB⊥BC,AB=BC=1,DC=2,点E在PB上.
(1)求证:平面AEC⊥平面PAD;
(2)当PD∥平面AEC时,求PE:EB的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.