选修4-4坐标系与参数方程
在平面直角坐标系中,取原点为极点x轴正半轴为极轴建立极坐标系,已知曲线C
1的极坐标方程为:ρ=2cosθ,直线C
2的参数方程为:
(t为参数)
(I )求曲线C
1的直角坐标方程,曲线C
2的普通方程.
(II)先将曲线C
1上所有的点向左平移1个单位长度,再把图象上所有点的横坐标伸长到原来的
倍得到曲线C
3,P为曲线C
3上一动点,求点P到直线C
2的距离的最小值,并求出相应的P点的坐标.
考点分析:
相关试题推荐
选修4-1几何证明选讲
已知△ABC中AB=AC,D为△ABC外接圆劣弧,
上的点(不与点A、C重合),延长BD至E,延长AD交BC的延长线于F.
(I)求证.∠CDF=∠EDF
(II)求证:AB•AC•DF=AD•FC•FB.
查看答案
已知函数f(x)=alnx+
(a≠0)在(0,
)内有极值.
(I)求实数a的取值范围;
(II)若x
1∈(0,
),x
2∈(2,∞)且a∈[
,2]时,求证:f(x
1)-f(x
2)≥ln2+
.
查看答案
在平面直角坐标系xOy中,已知定点A(-2,0)、B(2,0),M是动点,且直线MA与直线MB的斜率之积为-
,设动点M的轨迹为曲线C.
(I)求曲线C的方程;
(II )过定点T(-1,0)的动直线l与曲线C交于P,Q两点,是否存在定点S(s,0),使得
为定值,若存在求出s的值;若不存在请说明理由.
查看答案
有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.
据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如下表:
所用的时间(天数) | 10 | 11 | 12 | 13 |
通过公路1的频数 | 20 | 40 | 20 | 20 |
通过公路2的频数 | 10 | 40 | 40 | 10 |
假设汽车A只能在约定日期(某月某日)的前11天出发,汽车B只能在约定日期的前12天出发.
(I)为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车A和汽车B应如何选择各自的路径;
(II)若通过公路1、公路2的“一次性费用”分别为3.2万元、1.6万元(其它费用忽略不计),此项费用由生产商承担.如果生产商恰能在约定日期当天将货物送到,则销售商一次性支付给生产商40万元,若在约定日期前送到,每提前一天销售商将多支付给生产商2万元;若在约定日期后送到,每迟到一天,销售商将少支付给生产商2万元.如果汽车A、B长期按(I)所选路径运输货物,试比较哪辆汽车为生产商获得的毛利润更大.
(注:毛利润=(销售商支付给生产商的费用)-(一次性费用))
查看答案
四棱锥的正视图和俯视图如图,其中俯视图是直角梯形.
(I )若正视图是等边三角形,F为AC的中点,当点M在棱AD上移动时,是否总有BF丄CM,请说明理由;
(II)若平面ABC与平面ADE所成的锐二面角为45°,求直线AD与平面ABE所成角的正弦值.
查看答案