满分5 > 高中数学试题 >

设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数)...

设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=( )
A.-3
B.-1
C.1
D.3
首先由奇函数性质f(0)=0求出f(x)的解析式,然后利用定义f(-x)=-f(x)求f(-1)的值. 【解析】 因为f(x)为定义在R上的奇函数, 所以f(0)=2+2×0+b=0, 解得b=-1, 所以当x≥0时,f(x)=2x+2x-1, 又因为f(x)为定义在R上的奇函数, 所以f(-1)=-f(1)=-(21+2×1-1)=-3, 故选A.
复制答案
考点分析:
相关试题推荐
设A={x||2x-1|≤3},B={x|x-a>0},若A⊆B,则实数a的取值范围是( )
A.(-∞,-1)
B.(-∞,-1]
C.(-∞,-2)
D.(-∞,-2]
查看答案
若纯虚数z满足(2-i)z=4-bi,(i是虚数单位,b是实数),则b=( )
A.-2
B.2
C.-8
D.8
查看答案
如图,已知动直线l经过点P(4,0),交抛物线y2=2ax(a>0)于A,B两点,坐标原点O是PQ的中点,设直线AQ,BQ的斜率分别为k1,k2
(1)证明:k1+k2=0;
(2)当a=2时,是否存在垂直于x轴的直线l′,被以AP为直径的圆截得的弦长为定值?若存在,请求出直线l′的方程;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知函数f(x)=ex(x2+ax-a),其中a是常数.
(Ⅰ)当a=1时,求f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)在区间[0,+∞)上的最小值.
查看答案
如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=1,CC1=2,点D是AA1的中点.
(1)证明:平面BC1D⊥平面BCD;
(2)求CD与平面BC1D所成角的正切值.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.