满分5 > 高中数学试题 >

已知数列{an}满足a1=2,且对任意n∈N*,恒有nan+1=2(n+1)an...

已知数列{an}满足a1=2,且对任意n∈N*,恒有nan+1=2(n+1)an
(1)求数列{an}的通项公式;
(2)设区间manfen5.com 满分网中的整数个数为bn,求数列{bn}的通项公式.
(1)由nan+1=2(n+1)an,得,利用叠乘法,即可求得数列{an}的通项公式; (2)由(1)确定区间左右端点对应的通项,分n为奇数、偶数时讨论,即可求数列{bn}的通项公式. 【解析】 (1)由nan+1=2(n+1)an,得,当n≥2时,, 所以,当n≥2时,, 此式对于n=1也成立,所以数列{an}的通项公式为.…(4分) (2)由(1)知,,,…(8分) 当n为奇数时,; 当n为偶数时,.…(10分)
复制答案
考点分析:
相关试题推荐
假定某人每次射击命中目标的概率均为manfen5.com 满分网,现在连续射击3次.
(1)求此人至少命中目标2次的概率;
(2)若此人前3次射击都没有命中目标,再补射一次后结束射击;否则.射击结束.记此人射击结束时命中目标的次数为X,求X的数学期望.
查看答案
本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,
若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,半径分别为R,r(R>r>0)的两圆⊙O,⊙O1内切于点T,P是外圆⊙O上任意一点,连PT交⊙O1于点M,PN与内圆⊙O1相切,切点为N.求证:PN:PM为定值.
B.选修4-2:矩阵与变换
已知矩阵M=manfen5.com 满分网
(1)求矩阵M的逆矩阵;
(2)求矩阵M的特征值及特征向量;
C.选修4-2:矩阵与变换
在平面直角坐标系x0y中,求圆C的参数方程为manfen5.com 满分网为参数r>0),以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为manfen5.com 满分网.若直线l与圆C相切,求r的值.
D.选修4-5:不等式选讲
已知实数a,b,c满足a>b>c,且a+b+c=1,a2+b2+c2=1,求证:manfen5.com 满分网

manfen5.com 满分网 查看答案
数列{an}的前n项和为Sn,存在常数A,B,C,使得manfen5.com 满分网对任意正整数n都成立.
(1)若数列{an}为等差数列,求证:3A-B+C=0;
(2)若manfen5.com 满分网,设bn=an+n,数列{nbn}的前n项和为Tn,求Tn
(3)若C=0,{an}是首项为1的等差数列,设manfen5.com 满分网,求不超过P的最大整数的值.
查看答案
已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数.
(1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范围;
(2)解关于x的方程f(x)=|f′(x)|;
(3)设函数manfen5.com 满分网,求g(x)在x∈[2,4]时的最小值.
查看答案
如图,在平面直角坐标系xoy中,圆C:(x+1)2+y2=16,点F(1,0),E是圆C上的一个动点,EF的垂直平分线PQ与CE交于点B,与EF交于点D.
(1)求点B的轨迹方程;
(2)当D位于y轴的正半轴上时,求直线PQ的方程;
(3)若G是圆上的另一个动点,且满足FG⊥FE.记线段EG的中点为M,试判断线段OM的长度是否为定值?若是,求出该定值;若不是,说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.