满分5 > 高中数学试题 >

如图,在四棱锥S-ABCD中,底面ABCD是正方形,其他四个侧面都是等边三角形,...

如图,在四棱锥S-ABCD中,底面ABCD是正方形,其他四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.
(Ⅰ)当E为侧棱SC的中点时,求证:SA∥平面BDE;
(Ⅱ)求证:平面BDE⊥平面SAC;
(Ⅲ)(理科)当二面角E-BD-C的大小为45°时,试判断点E在SC上的位置,并说明理由.

manfen5.com 满分网
(I)做出辅助线,连接OE,由条件可得SA∥OE.根据因为SA⊈平面BDE,OE⊂平面BDE,得到SA∥平面BDE. (II)建立坐标系,写出要用的点的坐标,写出要用的向量的坐标,设出平面的法向量,根据法向量与平面上的向量垂直,写出一个法向量,根据两个法向量垂直证明两个平面垂直. (III)本题是一个一个二面角为条件,写出点的位置,做法同求两个平面的夹角一样,设出求出法向量,根据两个向量的夹角得到点要满足的条件,求出点的位置. 【解析】 (Ⅰ)证明:连接OE,由条件可得SA∥OE. 因为SA⊈平面BDE,OE⊂平面BDE,所以SA∥平面BDE. (Ⅱ)证明:由(Ⅰ)知SO⊥面ABCD,AC⊥BD.建立如图所示的空间直角坐标系. 设四棱锥S-ABCD的底面边长为2, 则O(0,0,0),S(0,0,),A(,0,0), B(0,,0),C(-,0,0),D(0,-,0). 所以=(-20,0),=(0,,0). 设CE=a(0<a<2),由已知可求得∠ECO=45°. 所以E(-+a,0,a),=(-+,-,). 设平面BDE法向量为n=(x,y,z),则即 令z=1,得n=(,0,1).易知=(0,,0)是平面SAC的法向量. 因为n•=(,0,1)•(0,-,0)=0,所以n⊥,所以平面BDE⊥平面SAC.(8分) (Ⅲ)设CE=a(0<a<2),由(Ⅱ)可知,平面BDE法向量为n=(,0,1).因为SO⊥底面ABCD, 所以=(0,0,)是平面SAC的一个法向量.由已知二面角E-BD-C的大小为45°. 所以|cos(,n)|=cos45°=,所以,解得a=1. 所以点E是SC的中点.
复制答案
考点分析:
相关试题推荐
在△ABC中,a,b,c分别为角A、B、C的对边,且满足b2+c2-a2=bc.
(Ⅰ)求角A的值;
(Ⅱ)若a=manfen5.com 满分网,设角B的大小为x,△ABC的周长为y,求y=f(x)的最大值.
查看答案
手表的表面在一平面上,整点1,2,…,12这12个数字等间隔地分布在半径为manfen5.com 满分网的圆周上,从整点i到整点(i+1)的向量记作manfen5.com 满分网,则manfen5.com 满分网=    查看答案
已知不等式组manfen5.com 满分网表示的平面区域为M若直线y=kx-3k+1与平面区域M有公共点,则k的取值范围是    查看答案
当x∈(1,2)时,不等式(x-1)2<logax恒成立,则实数a的取值范围是    查看答案
(几何证明选讲选做题)如图,PA是圆的切线,A为切点,PBC是圆的割线,且manfen5.com 满分网,则manfen5.com 满分网=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.