满分5 > 高中数学试题 >

已知f(x)=ax-1nx,x∈(0,e],g(x)=,其中e是自然常数,a∈R...

已知f(x)=ax-1nx,x∈(0,e],g(x)=manfen5.com 满分网,其中e是自然常数,a∈R.
(Ⅰ)当a=1时,研究f(x)的单调性与极值;
(Ⅱ)在(Ⅰ)的条件下,求证:f(x)>g(x)+manfen5.com 满分网
(Ⅲ)是否存在实数a,使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.
(Ⅰ)求导函数,确定函数的单调性,从而可得函数f(x)的极小值; (Ⅱ)f(x)在(0,e]上的最小值为1,令h(x)=g(x))+,求导函数,确定函数的单调性与最大值,即可证得结论; (Ⅲ)假设存在实数a,使f(x)的最小值是3,求导函数,分类讨论,确定函数的单调性,利用f(x)的最小值是3,即可求解. (Ⅰ)【解析】 f(x)=x-lnx,f′(x)= …(1分) ∴当0<x<1时,f′(x)<0,此时f(x)单调递减 当1<x<e时,f′(x)>0,此时f(x)单调递增   …(3分) ∴f(x)的极小值为f(1)=1                   …(4分) (Ⅱ)证明:∵f(x)的极小值为1,即f(x)在(0,e]上的最小值为1, ∴f(x)>0,f(x)min=1…(5分) 令h(x)=g(x))+=+,,…(6分) 当0<x<e时,h′(x)>0,h(x)在(0,e]上单调递增  …(7分) ∴h(x)max=h(e)=<=1=|f(x)|min     …(9分) ∴在(1)的条件下,f(x)>g(x)+;…(10分) (Ⅲ)【解析】 假设存在实数a,使f(x)的最小值是3,f′(x)= ①当a≤0时,x∈(0,e],所以f′(x)<0,所以f(x)在(0,e]上单调递减,f(x)min=f(e)=ae-1=3,∴a=(舍去),所以,此时f(x)无最小值.…(12分) ②当0<<e时,f(x)在(0,)上单调递减,在(,e]上单调递增,f(x)min=f()=1+lna=3,∴a=e2,满足条件.…(14分) ③当时,x∈(0,e],所以f′(x)<0, 所以f(x)在(0,e]上单调递减,f(x)min=f(e)=ae-1=3,∴a=(舍去), 所以,此时f(x)无最小值.…(15分) 综上,存在实数a=e2,使f(x)的最小值是3.…(16分)
复制答案
考点分析:
相关试题推荐
某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.
(1)根据频率分布直方图,求重量超过505克的产品数量.
(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列.
(3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.

manfen5.com 满分网 查看答案
如图,在四棱锥S-ABCD中,底面ABCD是正方形,其他四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.
(Ⅰ)当E为侧棱SC的中点时,求证:SA∥平面BDE;
(Ⅱ)求证:平面BDE⊥平面SAC;
(Ⅲ)(理科)当二面角E-BD-C的大小为45°时,试判断点E在SC上的位置,并说明理由.

manfen5.com 满分网 查看答案
在△ABC中,a,b,c分别为角A、B、C的对边,且满足b2+c2-a2=bc.
(Ⅰ)求角A的值;
(Ⅱ)若a=manfen5.com 满分网,设角B的大小为x,△ABC的周长为y,求y=f(x)的最大值.
查看答案
手表的表面在一平面上,整点1,2,…,12这12个数字等间隔地分布在半径为manfen5.com 满分网的圆周上,从整点i到整点(i+1)的向量记作manfen5.com 满分网,则manfen5.com 满分网=    查看答案
已知不等式组manfen5.com 满分网表示的平面区域为M若直线y=kx-3k+1与平面区域M有公共点,则k的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.