某企业自行设计了两条某种大型设备的生产线,分别称为1号线和2号线,经过两年的运行,每条生产线生产一台合格的该大型设备的时间数据统计如下表:
时间(天) | 15~25 | 25~35 | 35~45 | 45~55 | 55~65 |
1号线生产一台合格的该大型设备的频率 | 0.1 | 0.15 | 0.45 | 0.2 | 0.1 |
1号线生产一台合格的该大型设备的频率 | | 0.25 | 0.4 | 0.3 | 0.05 |
其中m~n表示生产一台合格的该大型设备的时间大于m天而不超过n天,m,n为正整数.
(Ⅰ)现该企业接到甲、乙两公司各一个订单,每个公司需要生产一台合格的该大型设备,甲、乙两公司要求交货时间分别为不超过45天和55天,为了尽最大可能在甲、乙两公司订单要求的时间内交货,该企业应如何选择生产甲、乙两公司订购的该大型设备的生产线;
(Ⅱ)该企业生产的这种大型设备的质量,以其质量等级系数t来衡量,t的值越大表明质量越好,如图是两条生产线生产的6台合格的该大型设备的质量等级系数的茎叶图,
试从质量等级系数的平均数和方差的角度对该企业的两条生产线生产的这种合格的大型设备的质量做出分析.
附:方差
,其中
为x
1,x
2,…x
n的平均数.
考点分析:
相关试题推荐
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=4
.
(Ⅰ)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(Ⅱ)求二面角A-PB-D的余弦值.
查看答案
已知函数
的最小正周期为π
(1)求f(x);
(2)当
时,求函数f(x)的值域.
查看答案
某数表中的数按一定规律排列,如图表所示,从左至右以及从上到下都是无限的.此表中,主对角线上数列1,2,5,10,17,…的通项公式a
n=
.
1 | 1 | 1 | 1 | 1 | 1 | … |
1 | 2 | 3 | 4 | 5 | 6 | … |
1 | 3 | 5 | 7 | 9 | 11 | … |
1 | 4 | 7 | 10 | 13 | 16 | … |
1 | 5 | 9 | 13 | 17 | 21 | … |
… | … | … | … | … | … | … |
查看答案
已知AB是表面积为4π的球的直径,C、D是该球球面上的两点,且BC=CD=DB=1,则三棱锥A-BCD的体积为
.
查看答案
如果由约束条件
所确定的平面区域的面积为S=f(t),则S的最大值为
.
查看答案