已知椭圆
的离心率为
,直线l:y=x+2与以原点为圆心、椭圆C
1的短半轴长为半径的圆相切.
(1)求椭圆C
1的方程;
(2)设椭圆C
1的左焦点为F
1,右焦点为F
2,直线l
1过点F
1且垂直于椭圆的长轴,动直线l
2垂直于直线l
1,垂足为点P,线段PF
2的垂直平分线交l
2于点M,求点M的轨迹C
2的方程;
(3)设C
2与x轴交于点Q,不同的两点R,S在C
2上,且满足
,求
的取值范围.
考点分析:
相关试题推荐
如图,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD=
.
(Ⅰ)求证:AE∥平面DCF;
(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为60°?
查看答案
在各项均为负数的数列{a
n}中,已知点(a
n,a
n+1)(n∈N
*)在函数
的图象上,且
.
(1)求证:数列{a
n}是等比数列,并求出其通项;
(2)若数列{b
n}的前n项和为S
n,且b
n=a
n+n,求S
n.
查看答案
某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是
.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助,令ξ表示该公司的资助总额.求出ξ数学期望Eξ.
查看答案
△ABC中,a,b,c分别是角A、B、C的对边,向量
.
(1)求角B的大小;
(2)若a=
,b=1,求c的值.
查看答案
如图,在正三角形ABC中,D,E,F分别为各边的中点,G,H分别为DE,AF的中点,将△ABC沿DE,EF,DF折成正四面体P-DEF,则四面体中异面直线PG与DH所成的角的余弦值为
.
查看答案