以A为球心AB为半径的球截正方体时经过B,D,A1三点,正方体内的部分球就是整球的8分之一,过A的正方体的三个相邻的表面上被截得三个四分之一圆弧,所以所截得的球的一部分的表面积为整球表面积的8分之一加三个半径为1的圆的面积的4分之1,即可得到结论.
【解析】
以A为球心AB为半径的球截正方体时经过B,D,A1三点,正方体内的部分球就是整球的8分之一,过A的正方体的三个相邻的表面上被截得三个四分之一圆弧,所以所截得的球的一部分的表面积为整球表面积的8分之一加三个半径为1的圆的面积的4分之1,即S=π•12×3+×4π•12=π
故选A.