满分5 > 高中数学试题 >

设a∈R,函数f(x)=lnx-ax. (Ⅰ)讨论函数f(x)的单调区间和极值;...

设a∈R,函数f(x)=lnx-ax.
(Ⅰ)讨论函数f(x)的单调区间和极值;
(Ⅱ)已知x1=manfen5.com 满分网(e为自然对数的底数)和x2是函数f(x)的两个不同的零点,求a的值并证明:x2manfen5.com 满分网
(I)先求函数f(x)的导函数f′(x),并确定函数的定义域,再解不等式f′(x)>0,f′(x)<0,即可分别求得函数f(x)的单调增区间和单调减区间,进而利用极值定义求得函数的极值,由于导函数中含有参数a,故为解不等式的需要,需讨论a的正负; (II)将x1=代入函数f(x),即可得a的值,再利用(I)中的单调性和函数的零点存在性定理,证明函数的另一个零点x2是在区间(,)上,即可证明结论 【解析】 (Ⅰ)函数f(x)的定义域为(0,+∞). 求导数,得f′(x)=-a=. ①若a≤0,则f′(x)>0,f(x)是(0,+∞)上的增函数,无极值; ②若a>0,令f′(x)=0,得x=. 当x∈(0,)时,f′(x)>0,f(x)是增函数; 当x∈(,+∞)时,f′(x)<0,f(x)是减函数. ∴当x=时,f(x)有极大值,极大值为f()=ln-1=-lna-1. 综上所述,当a≤0时,f(x)的递增区间为(0,+∞),无极值;当a>0时,f(x)的递增区间为(0,),递减区间为(,+∞),极大值为-lna-1 (Ⅱ)∵x1=是函数f(x)的零点, ∴f ()=0,即-a=0,解得a==. ∴f(x)=lnx-x. ∵f()=->0,f()=-<0,∴f()•f()<0. 由(Ⅰ)知,函数f(x)在(2,+∞)上单调递减, ∴函数f(x)在区间(,)上有唯一零点, 因此x2>.
复制答案
考点分析:
相关试题推荐
某校为了解学生的视力情况,随机抽查了一部分学生视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得到如下频率分布表:
分组频数频率
(3.9,4.2]30.06
(4.2,4.5]60.12
(4.5,4.8]25x
(4.8,5.1]yz
(5.1,5.4]20.04
合计n1.00
(I)求频率分布表中未知量n,x,y,z的值;
(II)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.
查看答案
如图,在四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,E是AB上一点.已知PD=manfen5.com 满分网,CD=4,AD=manfen5.com 满分网
(Ⅰ)若∠ADE=manfen5.com 满分网,求证:CE⊥平面PDE;
(Ⅱ)当点A到平面PDE的距离为manfen5.com 满分网时,求三棱锥A-PDE的侧面积.

manfen5.com 满分网 查看答案
在△ABC中,角A、B、C的对边分别为a、b、c,已知B=60°,cos(B+C)=-manfen5.com 满分网
(Ⅰ)求cosC的值;
(Ⅱ)若a=5,求△ABC的面积.
查看答案
定义:S为R的真子集,∀x,y∈S,若x+y∈S,x-y∈S,则称S对加减法封闭.有以下四个命题,请判断真假:
①自然数集对加减法封闭;
②有理数集对加减法封闭;
③若有理数集对加减法封闭,则无理数集也对加减法封闭;
④若S1,S2为R的两个真子集,且对加减法封闭,则必存在c∈R,使得c∉S1∪S2
四个命题中为“真”的是    .(填写序号) 查看答案
在平面直角坐标系xOy中,O为坐标原点,定义两点P(x1,y1),Q(x2,y2)之间的“直角距离”为d(P,Q)=|x1-x2|+|y1-y2|.已知B(1,0),点M为直线x-y+2=0上的动点,则d(B,M)的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.