满分5 > 高中数学试题 >

某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团...

manfen5.com 满分网某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.
(1)求合唱团学生参加活动的人均次数;
(2)从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率.
(3)从合唱团中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.
(1)由图可知,参加活动1次、2次和3次的学生人数分别为10、50和40,根据平均数的求法,计算可得答案. (2)欲求他们参加活动次数恰好相等的概率,频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,利用公式P=即可; (3)ξ可能取值是:0,1,2.分别计算出取这此值时的概率即得分布列,再根据数学期望即可计算出结果. 【解析】 由图可知,参加活动1次、2次和3次的学生人数分别为10、50和40. (1)该合唱团学生参加活动的人均次数为 ==2.3. (2)从合唱团中任选两名学生,他们参加活动次数恰好相等的概率为 P==. (3)从合唱团中任选两名学生,记“这两人中一人参加1次活动,另一人参加2次活动”为事件A,“这两人中一人参加2次活动,另一人参加3次活动”为事件B,“这两人中一人参加1次活动,另一人参加3次活动”为事件C.易知 P(ξ=1)=P(A)+P(B)=+=; P(ξ=2)=P(C)==; ξ的分布列: ξ的数学期望:Eξ=0×+1×+2×=.
复制答案
考点分析:
相关试题推荐
在直三棱柱ABC-A1B1C1中,BC=CC1=AB=2,AB⊥BC.点M,N分别是CC1,B1C的中点,G是棱AB上的动点.
(I)求证:B1C⊥平面BNG;
(II)若CG∥平面AB1M,试确定G点的位置,并给出证明;
(III)求二面角M-AB1-B的余弦值.

manfen5.com 满分网 查看答案
已知函数f(x)2sin(ωx+φ)(ω>0,0<φ<π)的最小正周期为π,且f(manfen5.com 满分网)=manfen5.com 满分网
(1)求ω,φ的值;
(2)若f(manfen5.com 满分网)=-manfen5.com 满分网(0<α<π),求cos2α的值.
查看答案
如果一个正四位数的千位数a、百位数b、十位数c和个位数d满足关系(a-b)(c-d)<0,则称其为“彩虹四位数”,例如2012就是一个“彩虹四位数”.那么,正四位数中“彩虹四位数”的个数为    .(直接用数字作答) 查看答案
已知数列{an}的前n项和Sn=n2-7n,且满足16<ak+ak+1<22,则正整数k=    查看答案
已知n展开式的第4项为常数项,则展开式中各项系数的和为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.