满分5 > 高中数学试题 >

已知椭圆C1:=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线...

已知椭圆C1manfen5.com 满分网=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y2=4x的焦点,M是C1与C2在第一象限的交点,且manfen5.com 满分网
(I)求椭圆C1的方程;   
(Ⅱ)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线7x-7y+1=0上,求直线AC的方程.
(I)设点M为(x1,y1),由F2是抛物线y2=4x的焦点,知F2(1,0);|MF2|=,由抛物线定义知x1+1=,即x1=;由M是C1与C2的交点,y12=4x1,由此能求出椭圆C1的方程. (II)直线BD的方程为:7x-7y+1=0,在菱形ABCD中,AC⊥BD,设直线AC的方程为x+y=m,由,得7x2-8mx+4m2-12=0.由点A、C在椭圆C1上,知(-8m)2-4×7×(4m2-12)>0,由此能导出直线AC的方程. 【解析】 (I)设点M为(x1,y1), ∵F2是抛物线y2=4x的焦点, ∴F2(1,0); 又|MF2|=,由抛物线定义知 x1+1=,即x1=; 由M是C1与C2的交点, ∴y12=4x1,即y1=±,这里取y1=; 又点M(,)在C1上, ∴+=1,且b2=a2-1, ∴9a4-37a2+4=0,∴(舍去), ∴a2=4,b2=3; ∴椭圆C1的方程为: (II)∵直线BD的方程为:7x-7y+1=0,在菱形ABCD中,AC⊥BD, 不妨设直线AC的方程为x+y=m, 则 ∴消去y,得7x2-8mx+4m2-12=0; ∵点A、C在椭圆C1上, ∴(-8m)2-4×7×(4m2-12)>0,即m2<7,∴-<m<; 设A(x1,y1),C(x2,y2), 则x1+x2=,y1+y2=(-x1+m)+(-x2+m)=-(x1+x2)+2m=-+2m=, ∴AC的中点坐标为, 由菱形ABCD知,点也在直线BD:7x-7y+1=0上, 即7×-7×+1=0,∴m=-1,由m=-1∈知: 直线AC的方程为:x+y=-1,即x+y+1=0.
复制答案
考点分析:
相关试题推荐
如图,在直角梯形ABEF中,将四边形DCEF沿CD折起,使∠FDA=60°,得到一个空间几何体如图所示.
(1)求证:BE∥平面ADF;
(2)求证:AF⊥平面ABCD;
(3)求三棱锥E-BCD的体积.

manfen5.com 满分网 查看答案
某水泥厂甲、乙两个车间包装水泥,在自动包装传送带上每隔30分钟抽取一包产品,称其重量,分别记录抽査数据如下:
甲:102,101,99,98,103,98,99
乙:110,115,90.85,75,115,110
(1)画出这两组数据的茎叶图:
(2>求出这两组数据的平均值和方差(用分数表示>:并说明哪个车间的产品较稳定.
(3)从甲中任取一个数据X (x≥100),从乙中任取一个数据y (y≤100),求满足条件|x-y|≤20的概率.
查看答案
如图,某人在塔的正东方向上的C处在与塔垂直的水平面内沿南偏西60°的方向以每小时6千米的速度步行了1分钟以后,在点D处望见塔的底端B在东北方向上,已知沿途塔的仰角∠AEB=α,α的最大值为60°.
(1)求该人沿南偏西60°的方向走到仰角α最大时,走了几分钟;
(2)求塔的高AB.

manfen5.com 满分网 查看答案
设f(x)=x3+ax2+bx+1的导函数f′(x)满足f′(1)=2a,f′(2)=-b,其中常数a,b∈R,则曲线y=f(x)在点(1,f(1))处的切线方程为    查看答案
若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.