满分5 > 高中数学试题 >

如图,在△ABC中,∠B=90°,以AB为直径的⊙O交AC于D,过点D作⊙O的切...

如图,在△ABC中,∠B=90°,以AB为直径的⊙O交AC于D,过点D作⊙O的切线交BC于E,AE交⊙O于点F.
(1)证明:E是BC的中点;
(2)证明:AD•AC=AE•AF.

manfen5.com 满分网
(1)欲证明E是BC的中点,即证EB=EC,即要证ED=EC,这个可通过证明∠CDE=∠C得到; (2)因由相似三角形可得:AB2=AE•AF,AB2=AD•AC,故欲证AD•AC=AE•AF,只要由AB=AB得到即可. 证明:(Ⅰ)证明:连接BD, 因为AB为⊙O的直径, 所以BD⊥AC,又∠B=90°, 所以CB切⊙O于点B,且ED切于⊙O于点E, 因此EB=ED,∠EBD=∠EDB,∠CDE+∠EDB=90°=∠EBD+∠C, 所以∠CDE=∠C, 得ED=EC,因此EB=EC,即E是BC的中点 (Ⅱ)证明:连接BF,显然BF是Rt△ABE斜边上的高, 可得△ABE∽△AAFB, 于是有,即AB2=AE•AF, 同理可得AB2=AD•AC,所以AD•AC=AE•AF
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和为Sn,函数f(x)=manfen5.com 满分网px3-manfen5.com 满分网(p+q)x2+qx+q(其中p、q均为常数,且p>q>0),当x=a1时,函数f(x)取得极小值、点(n,2Sn)(n∈N+)均在函数y=2px2-qx+q-f′(x)的图象上.
(1)求a1的值;   
(2)求数列{an}的通项公式.
查看答案
已知椭圆C1manfen5.com 满分网=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y2=4x的焦点,M是C1与C2在第一象限的交点,且manfen5.com 满分网
(I)求椭圆C1的方程;   
(Ⅱ)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线7x-7y+1=0上,求直线AC的方程.
查看答案
如图,在直角梯形ABEF中,将四边形DCEF沿CD折起,使∠FDA=60°,得到一个空间几何体如图所示.
(1)求证:BE∥平面ADF;
(2)求证:AF⊥平面ABCD;
(3)求三棱锥E-BCD的体积.

manfen5.com 满分网 查看答案
某水泥厂甲、乙两个车间包装水泥,在自动包装传送带上每隔30分钟抽取一包产品,称其重量,分别记录抽査数据如下:
甲:102,101,99,98,103,98,99
乙:110,115,90.85,75,115,110
(1)画出这两组数据的茎叶图:
(2>求出这两组数据的平均值和方差(用分数表示>:并说明哪个车间的产品较稳定.
(3)从甲中任取一个数据X (x≥100),从乙中任取一个数据y (y≤100),求满足条件|x-y|≤20的概率.
查看答案
如图,某人在塔的正东方向上的C处在与塔垂直的水平面内沿南偏西60°的方向以每小时6千米的速度步行了1分钟以后,在点D处望见塔的底端B在东北方向上,已知沿途塔的仰角∠AEB=α,α的最大值为60°.
(1)求该人沿南偏西60°的方向走到仰角α最大时,走了几分钟;
(2)求塔的高AB.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.