满分5 > 高中数学试题 >

在xoy平面上有一点列P1(a1,b1),P2(a2,b2),P3(a3,b3)...

在xoy平面上有一点列P1(a1,b1),P2(a2,b2),P3(a3,b3),…,Pn(an,bn),…,对每个自然数n,点Pn位于函数manfen5.com 满分网,(0<a<10)的图象上,且点Pn、点(n,0)与点(n+1,0)构成一个以Pn为顶点的等腰三角形.
(Ⅰ)求点Pn的纵坐标bn的表达式;
(Ⅱ)若对每个自然数n,以bn,bn+1,bn+2为边长能构成一个三角形,求a的取值范围;
(Ⅲ)设manfen5.com 满分网,若a取(Ⅱ)中确定的范围内的最小整数,问数列{Cn}前多少项的和最大?试说明理由.(lg2=0.3010,lg7=0.8450)
(Ⅰ)由于三角形为等腰三角形,所以点Pn(an,bn)在两点(n,0)与(n+1,0)连线的中垂线上,结合点Pn(an,bn)在函数(0<a<10)的图象上,可得结论; (Ⅱ)根据函数(0<a<10)是单调递减,可得对每一个自然数n有bn>bn+1>bn+2,进而由bn,bn+1,bn+2为边长能构成一个三角形,可得bn+2+bn+1>bn,由此可求a的取值范围; (Ⅲ)先确定数列{Cn}是一个递减的等差数列,再根据当Cn≥0且Cn+1<0时,数列{Cn}的前n项的和最大,即可得到结论. 【解析】 (Ⅰ)由于三角形为等腰三角形,所以点Pn(an,bn)在两点(n,0)与(n+1,0)连线的中垂线上, 从而an=n+,又因为点Pn(an,bn)在函数(0<a<10)的图象上,所以bn=2000()n+; (Ⅱ)∵函数(0<a<10)是单调递减,∴对每一个自然数n有bn>bn+1>bn+2, 又因为以bn,bn+1,bn+2为边长能构成一个三角形,所以bn+2+bn+1>bn,从而 ∵0<a<10,∴5(-1)<a<10 (Ⅲ)∵5(-1)<a<10,∴a=7,∴, 于是 ∴数列{Cn}是一个递减的等差数列. 因此,当且仅当Cn≥0且Cn+1<0时,数列{Cn}的前n项的和最大. 由得n≤20.8, ∴n=20.
复制答案
考点分析:
相关试题推荐
设函数f(x)=x3-3ax+b(a≠0).
(Ⅰ)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;
(Ⅱ)求函数f(x)的单调区间与极值点.
查看答案
如图所示,正方形ABCD与直角梯形ADEF所在平面互相垂直,∠ADE=90°,AF∥DE,DE=DA=2AF=2.
(1)求证:AC∥平面BEF;
(2)求四面体BDEF的体积.

manfen5.com 满分网 查看答案
由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高.然而也有部分公众对该活动的实际效果与负面影响提出了疑问.对此,某新闻媒体进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:
支持保留不支持
20岁以下800450200
20岁以上(含20岁)100150300
(Ⅰ)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从“支持”态度的人中抽取了45人,求n的值;
(Ⅱ)在持“不支持”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中任意选取2人,求至少有1人20岁以下的概率.
查看答案
如图,设P是单位圆和x轴正半轴的交点,M、N是单位圆上的两点,O是坐标原点,∠POM=manfen5.com 满分网,∠PON=α,α∈[0,π)
(1)求点M的坐标;
(2)设f(α)=manfen5.com 满分网manfen5.com 满分网,求f(α)的取值范围.

manfen5.com 满分网 查看答案
在极坐标系中,若过点A(3,0)且与极轴垂直的直线交曲线ρ=4cosθ于A、B两点,则|AB|=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.