满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90...

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=manfen5.com 满分网AD=1,CD=manfen5.com 满分网
(Ⅰ)求证:平面PQB⊥平面PAD;
(Ⅱ)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值.

manfen5.com 满分网
(Ⅰ)法一:由AD∥BC,BC=AD,Q为AD的中点,知四边形BCDQ为平行四边形,故CD∥BQ.由∠ADC=90°,知QB⊥AD.由平面PAD⊥平面ABCD,知BQ⊥平面PAD.由此能够证明平面PQB⊥平面PAD. 法二:由AD∥BC,BC=AD,Q为AD的中点,知四边形BCDQ为平行四边形,故CD∥BQ.由∠ADC=90°,知∠AQB=90°.由PA=PD,知PQ⊥AD,故AD⊥平面PBQ.由此证明平面PQB⊥平面PAD. (Ⅱ)由PA=PD,Q为AD的中点,知PQ⊥AD.由平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,知PQ⊥平面ABCD.以Q为原点建立空间直角坐标系,利用向量法能够求出t=3. (本小题满分15分) (Ⅰ)证法一:∵AD∥BC,BC=AD,Q为AD的中点, ∴四边形BCDQ为平行四边形,∴CD∥BQ. ∵∠ADC=90°∴∠AQB=90°,即QB⊥AD. 又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴BQ⊥平面PAD. ∵BQ⊂平面PQB,∴平面PQB⊥平面PAD. …(9分) 证法二:AD∥BC,BC=AD,Q为AD的中点, ∴四边形BCDQ为平行四边形,∴CD∥BQ. ∵∠ADC=90°∴∠AQB=90°. ∵PA=PD,∴PQ⊥AD. ∵PQ∩BQ=Q,∴AD⊥平面PBQ. ∵AD⊂平面PAD,∴平面PQB⊥平面PAD.…(9分) 【解析】 (Ⅱ)∵PA=PD,Q为AD的中点,∴PQ⊥AD. ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PQ⊥平面ABCD. 如图,以Q为原点建立空间直角坐标系. 则平面BQC的法向量为; Q(0,0,0),,,. 设M(x,y,z),则,, ∵, ∴,∴…(12分) 在平面MBQ中,,, ∴平面MBQ法向量为.…(13分) ∵二面角M-BQ-C为30°, ∴, ∴t=3.…(15分)
复制答案
考点分析:
相关试题推荐
已知数列{an}是递增数列,且满足a3•a5=16,a2+a6=10.
(1)若{an}是等差数列,求数列{an}的通项公式;
(2)对于(1)中{an},令manfen5.com 满分网,求数列{bn}的前n项和Tn
查看答案
在钝角三角形ABC中,a、b、c分别是角A、B、C的对边,manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求角A的大小;
(Ⅱ)求函数y=2sin2B+cos(manfen5.com 满分网-2B)的值域.
查看答案
(考生注意:从下列三题中任选一题,多选的只按照第一题计分)
①对任意x∈R,|2-x|+|3+x|≥a2-4a恒成立,则a满足   
②在极坐标系中,点P(2,-manfen5.com 满分网)到直线l:ρsin(manfen5.com 满分网)=1的距离是   
③如图,点P在圆O直径AB的延长线上,且PB=OB=2,PC切圆O于点C,CD⊥AB于点D,则CD=   
manfen5.com 满分网 查看答案
已知函数f(x)=-x3+3f′(2)x,令n=f′(2),则二项式(x+manfen5.com 满分网n展开式中常数项是第     项. 查看答案
已知数列{an},{bn}满足a1=manfen5.com 满分网,an+bn=1,bn+1=manfen5.com 满分网(n∈N*),则b2012=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.