已知函数f(x)=(ax
2+bx+c)e
-x(a≠0)的图象过点(0,-2),且在该点的切线方程为4x-y-2=0.
(Ⅰ)若f(x)在[2,+∞)上为单调增函数,求实数a的取值范围;
(Ⅱ)若函数F(x)=f(x)-m恰好有一个零点,求实数m的取值范围.
考点分析:
相关试题推荐
已知点D(0,-2),过点D作抛物线C
1:x
2=2py(p>0)的切线l,切点A在第二象限,如图
(Ⅰ)求切点A的纵坐标;
(Ⅱ)若离心率为
的椭圆
恰好经过切点A,设切线l交椭圆的另一点为B,记切线l,OA,OB的斜率分别为k,k
1,k
2,若k
1+2k
2=4k,求椭圆方程.
查看答案
某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定位3500元;若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,今X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力.
(1)求X的分布列;
(2)求此员工月工资的期望.
查看答案
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=
AD=1,CD=
.
(Ⅰ)求证:平面PQB⊥平面PAD;
(Ⅱ)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值.
查看答案
已知数列{a
n}是递增数列,且满足a
3•a
5=16,a
2+a
6=10.
(1)若{a
n}是等差数列,求数列{a
n}的通项公式;
(2)对于(1)中{a
n},令
,求数列{b
n}的前n项和T
n.
查看答案
在钝角三角形ABC中,a、b、c分别是角A、B、C的对边,
,
,且
∥
.
(Ⅰ)求角A的大小;
(Ⅱ)求函数y=2sin
2B+cos(
-2B)的值域.
查看答案