满分5 > 高中数学试题 >

已知函数f(x)=x2+alnx (Ⅰ)当a=-2时,求函数f(x)的单调区间;...

已知函数f(x)=x2+alnx
(Ⅰ)当a=-2时,求函数f(x)的单调区间;
(Ⅱ)若g(x)=f(x)+manfen5.com 满分网在[1,+∞)上是单调函数,求实数a的取值范围.
(Ⅰ)求导函数,利用导数的正负,可得函数的单调递增区间与单调递减区间; (Ⅱ)由题意得g'(x)=2x+-,分函数g(x)为[1,+∞)上的单调增函数与单调减函数讨论,即可确定实数a的取值范围. 【解析】 (Ⅰ)求导函数可得=(x>0) 令f′(x)>0,则-1<x<0或x>1,∵x>0,∴x>1; 令f′(x)<0,则x<-1或0<x<1,∵x>0,∴0<x<1; ∴函数的单调递增区间是(1,+∞),单调递减区间是(0,1). (Ⅱ)由题意得g'(x)=2x+-, ①若函数g(x)为[1,+∞)上的单调增函数,则2x+-≥0在[1,+∞)上恒成立,即a≥-2x2 在[1,+∞)上恒成立, 设Φ(x)=-2x2,∵Φ(x)在[1,+∞)上单调递减, ∴Φ(x)≤Φ(1)=0,∴a≥0 ②若函数g(x)为[1,+∞)上的单调减函数,则 g'(x)≤0在[1,+∞)上恒成立,不可能. ∴实数a的取值范围[0,+∞)
复制答案
考点分析:
相关试题推荐
已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,manfen5.com 满分网)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为manfen5.com 满分网,求以F2为圆心且与直线l相切的圆的方程.
查看答案
为了研究化肥对小麦产量的影响,某科学家将一片土地划分成200个50m2的小块,并在100个小块上施用新化肥,留下100个条件大体相当的小块不施用新化肥.下表1和表2分别是施用新化肥和不施用新化肥的小麦产量频数分布表(小麦产量单位:kg)
表1:施用新化肥小麦产量频数分布表
小麦产量[0,10)[10,20)[20,30)[30,40)[40,50)
频数103540105
表2:不施用新化肥小麦产量频数分布表
小麦产量[0,10)[10,20)[20,30)[30,40)
频数1550305
(1)完成下面频率分布直方图;
manfen5.com 满分网manfen5.com 满分网
施用新化肥后小麦产量的频率分布直方图       不施用新化肥后小麦产量的频率分布直方图
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计施用化肥和不施用化肥的一小块土地的小麦平均产量;
(3)完成下面2×2列联表,并回答能否有99.5%的把握认为“施用新化肥和不施用新化肥的小麦产量有差异”
表3:
小麦产量小于20kg小麦产量不小于20kg合计
施用新化肥a=b=
不施用新化肥c=d=
合计n=
附:manfen5.com 满分网
P(K2≥k)0.050     0.010     0.005      0.001
k3.841     6.635     7.879     10.828

查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,E、F分别为PC、BD的中点,侧面PAD⊥底面ABCD,且PA=PD=manfen5.com 满分网AD.
(1)求证:EF∥平面PAD;
(2)求三棱锥C-PBD的体积.
查看答案
在△ABC中,角A、B、C所对的边分别为a、b、c,已知a=2,manfen5.com 满分网,B=60°.
(I)求c及△ABC的面积S;
(II)求sin(2A+C).
查看答案
观察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
照此规律,第五个等式应为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.