不等式可变形为|x-1|-|2x+3|≤ 恒成立,又因为根据绝对值不等式可得到右边大于等于1.即可得到|x-1|-|2x+3|≤1,分类讨论去绝对值号即可求得x的取值范围.
【解析】
已知对于任意非零实数m,不等式|2m-1|+|1-m|≥|m|(|x-1|-|2x+3|)恒成立
:即|x-1|-|2x+3|≤ 恒成立,∵≥=1,
所以只需|x-1|-|2x+3|≤1
①当x≤-时,原式1-x+2x+3≤1,即x≤-3,所以x≤-3
②当-<x<1时,原式1-x-2x-3≤1,即x≥-1,所以-1≤x<1
③当x≥1时,原式x-1-2x-3≤1,即x≥-5,所以x≥1.
综上,x的取值范围为(-∞,-3]∪[-1,+∞).
故答案为(-∞,-]∪[-1,+∞).