满分5 > 高中数学试题 >

已知椭圆=1(a>b>0)的离心率e=,左、右焦点分别为F1、F2,点,点F2在...

已知椭圆manfen5.com 满分网=1(a>b>0)的离心率e=manfen5.com 满分网,左、右焦点分别为F1、F2,点manfen5.com 满分网,点F2在线段PF1的中垂线上.
(1)求椭圆C的方程;
(2)设直线l:y=kx+m与椭圆C交于M、N两点,直线F2M与F2N的倾斜角分别为α,β,且α+β=π,求证:直线l过定点,并求该定点的坐标.
(1)根据椭圆的离心率求得a和c的关系,进而根据椭圆C的左、右焦点分别为F1(-c,0),F2(c,0)又点F2在线段PF1的中垂线上 推断|F1F2|=|PF2|,进而求得c,则a和b可得,进而求得椭圆的标准方程. (2)设直线MN方程为y=kx+m,与椭圆方程联立消去y,设M(x1,y1),N(x2,y2),根据韦达定理可表示出x1+x2和x1x2,表示出直线F2M和F2N的斜率,由α+β=π可推断两直线斜率之和为0,把x1+x2和x1x2代入即可求得k和m的关系,代入直线方程进而可求得直线过定点. 【解析】 (1)由椭圆C的离心率得,其中, 椭圆C的左、右焦点分别为F1(-c,0),F2(c,0)又点F2在线段PF1的中垂线上 ∴解得c=1,a2=2,b2=1, ∴. (2)由题意,知直线MN存在斜率,设其方程为y=kx+m.由 消去y,得(2k2+1)x2+4kmx+2m2-2=0.设M(x1,y1),N(x2,y2), 则,且 由已知α+β=π,得. 化简,得2kx1x2+(m-k)(x1+x2-2m=0 ∴整理得m=-2k. ∴直线MN的方程为y=k(x-2),因此直线MN过定点,该定点的坐标为(2,0)
复制答案
考点分析:
相关试题推荐
如图,矩形ABCD中,AB=CD=2manfen5.com 满分网,BC=AD=manfen5.com 满分网.现沿着其对角线AC将D点向上翻折,使得二面角D-AC-B为直二面角.
(Ⅰ)求二面角A-BD-C平面角的余弦值.
(Ⅱ)求四面体ABCD外接球的体积.

manfen5.com 满分网 查看答案
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.记录如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩的中位数;
(2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由;
(3)若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.
查看答案
在公比为2的等比数列{an}中,a2与a4的等差中项是manfen5.com 满分网
(Ⅰ)求a1的值;
(Ⅱ)若函数y=|a1|sin(manfen5.com 满分网),|ϕ|<π的一部分图象如图所示,M(-1,|a1|),manfen5.com 满分网为图象上的两点,设∠MPN=β,其中P与坐标原因O重合,0≤β≤π,求tan(φ-β)的值.

manfen5.com 满分网 查看答案
若对于任意非零实数m,不等式|2m-1|+|1-m|>|m|(|x-1|-|2x+3|)恒成立,则实数x的取值范围    查看答案
如图,是某四棱锥的三视图,则该几何体的表面积为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.