满分5 > 高中数学试题 >

已知函数,其中a≠0. (1)当a,b满足什么条件时,f(x)取得极值? (2)...

已知函数manfen5.com 满分网,其中a≠0.
(1)当a,b满足什么条件时,f(x)取得极值?
(2)已知a>0,且f(x)在区间(0,1]上单调递增,试用a表示出b的取值范围.
(1)对函数求导,由题意可得f′(x)=0有解,由a≠0,分a>0,a<0讨论可求解 (2)f(x)在区间(0,1]上单调递增,可得f′(x)≥0在[0,1]上恒成立,从而转化为求函数的最值,可求解. 【解析】 (1)由已知得f′(x)=ax2+2bx+1, 令f′(x)=0,得ax2+2bx+1=0, f(x)要取得极值,方程ax2+2bx+1=0,必须有解, 所以△=4b2-4a>0,即b2>a, 此时方程ax2+2bx+1=0的根为 x1==,x2==,, 所以f′(x)=a(x-x1)(x-x2) 当a>0时, 所以f(x)在x1,x2处分别取得极大值和极小值. 当a<0时, 所以f(x)在x1,x2处分别取得极大值和极小值. 综上,当a,b满足b2>a时,f(x)取得极值. (2)要使f(x)在区间(0,1]上单调递增,需使f′(x)=ax2+2bx+1≥0在(0,1]上恒成立. 即b≥--,x∈(0,1]恒成立, 所以b≥- 设g(x)=--,g′(x)=-+=, 令g′(x)=0得x=或x=-(舍去), 当a>1时,0<<1,当x∈(0,]时g′(x)>0,g(x)=--单调增函数; 当x∈(,1]时g′(x)<0,g(x)=--单调减函数, 所以当x=时,g(x)取得最大,最大值为g()=-. 所以b≥- 当0<a≤1时,≥1, 此时g′(x)≥0在区间(0,1]恒成立, 所以g(x)=--在区间(0,1]上单调递增,当x=1时g(x)最大,最大值为g(1)=-, 所以b≥- 综上,当a>1时,b≥-; 0<a≤1时,b≥-;
复制答案
考点分析:
相关试题推荐
如图(图1)等腰梯形PBCD,A为PD上一点,且AB⊥PD,AB=BC,AD=2BC,沿着AB折叠使得二面角P-AB-D为60°的二面角,连接PC、PD,在AD上取一点E使得3AE=ED,连接PE得到如图(图2)的一个几何体.manfen5.com 满分网
(1)求证:平面PAB⊥平面PCD;
(2)求PE与平面PBC所成角的正弦值.
查看答案
等比数列{an}为递增数列,且manfen5.com 满分网manfen5.com 满分网,数列manfen5.com 满分网(n∈N*).
(1)求数列{bn}的前n项和Sn
(2)manfen5.com 满分网,求使Tn>0成立的最小值n.
查看答案
已知向量manfen5.com 满分网=(cosx,sinx),manfen5.com 满分网=(-cosx,cosx),manfen5.com 满分网=(-1,0).
(Ⅰ)若manfen5.com 满分网,求向量manfen5.com 满分网manfen5.com 满分网的夹角;
(Ⅱ)当manfen5.com 满分网时,求函数manfen5.com 满分网的最大值.
查看答案
对于函数f(x)=sinx+cosx,给出下列四个命题:
①存在manfen5.com 满分网,使manfen5.com 满分网; 
②存在manfen5.com 满分网,使f(x+α)=f(x+3α)恒成立; 
③存在φ∈R,使函数f(x+ϕ)的图象关于y轴对称;
④函数f(x)的图象关于点manfen5.com 满分网对称; 
⑤若manfen5.com 满分网,则manfen5.com 满分网
其中正确命题的序号是    查看答案
若向量manfen5.com 满分网=(2cosα,2sinα),manfen5.com 满分网=(3cosβ,3sinβ),a与b的夹角为60°,则直线manfen5.com 满分网与圆manfen5.com 满分网的位置关系是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.