满分5 > 高中数学试题 >

已知各项全不为零的数列{ak}的前k项和为Sk,且Sk=N*),其中a1=1. ...

已知各项全不为零的数列{ak}的前k项和为Sk,且Sk=manfen5.com 满分网N*),其中a1=1.
(Ⅰ)求数列{ak}的通项公式;
(Ⅱ)对任意给定的正整数n(n≥2),数列{bk}满足manfen5.com 满分网(k=1,2,…,n-1),b1=1,求b1+b2+…+bn
(Ⅰ)由,得ak(ak+1-ak-1)=2ak.再由ak+1-ak-1=2.知a2m-1=1+(m-1)•2=2m-1.a2m=2+(m-1)•2=2m,m∈N*.由此可知ak=k(k∈N*). (Ⅱ)由题意知=.由此可求出b1+b2+b3++bn的值. 【解析】 (Ⅰ)当k=1,由及a1=1,得a2=2. 当k≥2时,由,得ak(ak+1-ak-1)=2ak. 因为ak≠0,所以ak+1-ak-1=2.从而a2m-1=1+(m-1)•2=2m-1.a2m=2+(m-1)•2=2m,m∈N*. 故ak=k(k∈N*). (Ⅱ)因为ak=k,所以. 所以=. 故b1+b2+b3++bn==.
复制答案
考点分析:
相关试题推荐
如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为1,M是底面BC边上的中点,N是侧棱CC1上的点,且CN=2C1N.
(Ⅰ)求二面角B1-AM-N的平面角的余弦值;
(Ⅱ)求点B1到平面AMN的距离.

manfen5.com 满分网 查看答案
甲、乙两人在罚球线投球命中的概率分别为manfen5.com 满分网manfen5.com 满分网,投中一球得1分,投不中得0 分,且两人投球互不影响.
(Ⅰ)甲、乙两人在罚球线各投球一次,记他们得分之和为ξ,求ξ的概率分布列和数学期望;
(Ⅱ)甲、乙在罚球线各投球两次,求这四次投球中至少一次命中的概率.
查看答案
已知向量manfen5.com 满分网=(2sinx,manfen5.com 满分网cosx),manfen5.com 满分网=(sinx,2sinx),函数f(x)=manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)若不等式f(x)≥m对x∈[0,manfen5.com 满分网]都成立,求实数m的最大值.
查看答案
(1)(几何证明选讲)如图,AB是半圆O的直径,点C在半圆上,CD⊥AB,垂足为D,且AD=5DB,设∠COD=θ,则tanθ的值为   
(2)(坐标系与参数方程)圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ,则经过两圆圆心的直线的直角坐标方程为   
(3)(不等式选讲)若不等式|3x-b|<4的解集中的整数有且仅有0,1,2,则b的取值范围是   
manfen5.com 满分网 查看答案
已知点M(x,y)满足条件manfen5.com 满分网(k为常数),若z=x+3y的最大值为12,则k=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.