在△ABC中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D.
(1)求证:
;
(2)若AC=3,求AP•AD的值.
考点分析:
相关试题推荐
已知椭圆
=1(a>b>0)的离心率e=
,左、右焦点分别为F
1、F
2,点
,点F
2在线段PF
1的中垂线上.
(1)求椭圆C的方程;
(2)设直线l:y=kx+m与椭圆C交于M、N两点,直线F
2M与F
2N的倾斜角分别为α,β,且α+β=π,求证:直线l过定点,并求该定点的坐标.
查看答案
已知函数f(x)=mx
2+lnx-2x.
(1)若m=-4,求函数f(x)的最大值.
(2)若f(x)在定义域内为增函数,求实数m的取值范围.
查看答案
如图,两矩形ABCD、ABEF所在平面互相垂直,DE与平面ABCD及平面所成角分别为30°、45°,M、N分别为DE与DB的中点,且MN=1.
(Ⅰ)求证:MN⊥平面ABCD;
(Ⅱ)求线段AB的长.
查看答案
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.记录如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩的中位数;
(2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由.
查看答案
函数y=
sin(
),
,
为图象的两极值点.
(Ⅰ)求φ的值;
(Ⅱ)设∠MPN=β,其中P与坐标原因O重合,0≤β≤π,求tan(φ-β)的值.
查看答案