如图,线段AB过y轴上一点N(0,m),AB所在直线的斜率为k(k≠0),两端点A,B到y轴的距离之差为4k.
(1)求出以y轴为对称轴,过A,O,B三点的抛物线方程;
(2)过抛物线的焦点F作动弦CD,过C,D两点分别作抛物线的切线,设其交点为M,求点M的轨迹方程,并求出
的值.
考点分析:
相关试题推荐
如图,已知棱柱ABCD-A
1B
1C
1D
1的底面是菱形,且AA
1⊥面ABCD,∠DAB=60°,AD=AA
1=1,F为棱AA
1的中点,M为线段BD
1的中点.
(Ⅰ)求证:MF∥面ABCD;
(Ⅱ)判断直线MF与平面BDD
1B
1的位置关系,并证明你的结论;
(Ⅲ)求三棱锥D
1-BDF的体积.
查看答案
某大学高等数学老师这学期分别用A,B两种不同的教学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图:
(Ⅰ)依茎叶图判断哪个班的平均分高?
(Ⅱ)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率;
(Ⅲ)学校规定:成绩不低于85分的为优秀,请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
下面临界值表仅供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:
,其中n=a+b+c+d)
查看答案
已知向量
,设函数
.
(1)求f(x)的最小正周期与单调递减区间
(2)在△ABC中,a、b、c分别是角A、B、C的对边,若f(A)=4,b=1,△ABC的面积为
,求a的值.
查看答案
已知F
1、F
2是椭圆
=1(5<a<10)的两个焦点,B是短轴的一个端点,则△F
1BF
2的面积的最大值是
.
查看答案
在边长为2的正三角形ABC中,以A为圆心,
为半径画一弧,分别交AB,AC于D,E.若在△ABC这一平面区域内任丢一粒豆子,则豆子落在扇形ADE内的概率是
.
查看答案