满分5 > 高中数学试题 >

已知函数在x=1处取到极值2. (Ⅰ)求f(x)的解析式; (Ⅱ)设函数.若对任...

已知函数manfen5.com 满分网在x=1处取到极值2.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数manfen5.com 满分网.若对任意的x1∈R,总存在x2∈[1,e],使得manfen5.com 满分网,求实数a的取值范围.
(Ⅰ)利用函数的求导公式计算函数的导数,根据函数在x=1处取到极值得出函数在x=1处的导数为0,再把x=2代入函数,联立两式求出m,n的值即可. 已知函数在x=1处取到极值2. (Ⅱ)由(Ⅰ)知f(x)的定义域为R,且f(-x)=-f(x).故f(x)为奇函数.f(0)=0,x>0时,f(x)>0,f(x)=≤2.当且仅当x=1时取“=”. 故f(x)的值域为[-2,2].从而.依题意有(7分) 【解析】 (Ⅰ)(2分) 根据题意,f(x)=, f′(x)=-; 由f(x)在x=1处取到极值2,故f′(1)=0,f(1)=2即, 解得m=4,n=1,经检验,此时f(x)在x=1处取得极值.故(4分) (Ⅱ)由(Ⅰ)知f(x)的定义域为R,且f(-x)=-f(x).故f(x)为奇函数.f(0)=0,x>0时,f(x)>0,f(x)=≤2.当且仅当x=1时取“=”. 故f(x)的值域为[-2,2].从而.依题意有(7分) 函数的定义域为(0,+∞),(8分) ①当a≤1时,g′(x)>0函数g(x)在[1,e]上单调递增,其最小值为合题意; ②当1<a<e时,函数g(x)在[1,a)上有g′(x)<0,单调递减,在(a,e]上有g′(x)>0,单调递增,所以函数g(x)最小值为f(a)=lna+1,由,得.从而知符合题意. ③当a≥e时,显然函数g(x)在[1,e]上单调递减,其最小值为,不合题意(11分)综上所述,a的取值范围为(12分)
复制答案
考点分析:
相关试题推荐
椭圆E的中心在坐标原点O,焦点在x轴上,离心率为manfen5.com 满分网.点P(1,manfen5.com 满分网)、A、B在椭圆E上,且manfen5.com 满分网+manfen5.com 满分网=mmanfen5.com 满分网(m∈R).
(1)求椭圆E的方程及直线AB的斜率;
(2)当m=-3时,证明原点O是△PAB的重心,并求直线AB的方程.
查看答案
在三棱锥P-ABC中,△PAC和△PBC都是边长为manfen5.com 满分网的等边三角形,AB=2,O,D分别是AB,PB的中点.
(1)求证:OD∥平面PAC;
(2)求证:PO⊥平面ABC;
(3)求三棱锥P-ABC的体积.

manfen5.com 满分网 查看答案
《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100ml(不含80)之间,属于酒后贺车;在80mg/100ml (含80)以上时,属醉酒贺车,对于酒后驾车和醉酒驾车的驾驶员公安机关将给予不同程度的处罚.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了250辆机动车,查出酒后驾车和醉酒贺车的驾驶员20人,图是对这20人血液中酒精含量进行检查所得结果的频率分布直方图.
(1)根据频率分布直方图,求:此次抽查的250人中,醉酒驾车的人数;
(2)从血液酒精浓度在[70,90)范围内的驾驶员中任取2人,求恰有1人属于醉酒驾车的概率.

manfen5.com 满分网 查看答案
已知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.
(1)求数列{an}的通项公式;
(2)设Tn为数列{manfen5.com 满分网}的前n项和,若Tn≤λan+1对∀n∈N*恒成立,求实数λ的最小值.
查看答案
已知向量manfen5.com 满分网=(-cos 2x,a),manfen5.com 满分网=(a,2-manfen5.com 满分网sin 2x),函数f(x)=manfen5.com 满分网manfen5.com 满分网-5(a>0).
(1)求函数f(x)(x∈R)的值域;
(2)当a=2时,求函数y=f(x)在[0,π]上单调递增区间.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.